CHAPTER 10

Efficient Binary Search
Trees

10.1 OPTIMAL BINARY SEARCH TREES

Binary search trees were introduced in Chapter 5. In this section, we consider the con-
struction of binary search trees for a static set of elements. That is, we make no addi-
tions to or deletions from the set. Only searches are performed.

A sorted list can be searched using a binary search. For this search, we can con-
struct a binary search tree with the property that searching this tree using the function
iterSearch (Program 5.17) is equivalent to performing a binary search on the sorted Iist.
For instance, a binary search on the sorted element list (5, 10, 15) (for convenience, all
examples in this chapter show only an element’s key rather than the complete element)
corresponds to using function iterSearch on the binary search tree of Figure 10.1.
Although this tree is a full binary tree, it may not be the optimal binary search tree to use
when the probabilities with which different elements are searched are different.

To find an optimal binary search tree for a given collection of elements, we must
first decide on a cost measure for search trees. When searching for an element at level /,

Figure 10.1: Binary search tree corresponding to a binary search on the list (5, 10, 15)

function iterSearch makes [iterations of the while loop. Since this while loop deter-
mines the cost of the search, it is reasonable to use the level number of a node as its cost.

(b)

Figure 10.2: Two binary search trees

Example 10.1: Consider the two search trees of Figure 10.2. The second of these
requires at most three comparisons to decide whether the element being sought is in the
tree. The first binary tree may require four comparisons, since any search key & such that
10 < & < 20 will test four nodes. Thus, as far as worst-case search time is concerned, the
second binary tree is more desirable than the first. To search for a key in the first tree
takes one comparison for the 10, two for each of 5 and 25, three for 20, and four for 15.
Assuming that each key is searched for with equal probability, the average number of
comparisons for a successful search is 2.4. For the second binary search tree this amount

Optimal Binary Search Trees 483

is 2.2. Thus, the second tree has a better average behavior, too.

Suppose that each of 5, 10, 15, 20 and 25 is searched for with probablility 0.3, 0.3,
0.05, 0.05 and 0.3, respectively. The average number of comparisons for a successful
search in the trees of Figure 10.2 (a) and (b) is 1.85 and 2.05, respectively. Now, the first
tree has better average behavior than the second tree! O

In evaluating binary search trees, it is useful to add a special ‘*square’’ node at
every null link. Doing this to the trees of Figure 10.2 yields the trees of Figure 10.3.
Remember that every binary tree with n nodes has n + 1 null links and therefore will
have n + 1 square nodes. We shall call these nodes external nodes because they are not
part of the original tree. The remaining nodes will be called internal nodes. Each time a
binary search tree is examined for an identifier that is not in the tree, the search ter-
minates at an external node. Since all such searches are unsuccessful searches, external
nodes will also be referred to as failure nodes. A binary tree with external nodes added
is an extended binary tree. The concept of an extended binary tree as just defined is the
same as that defined in connection with leftist trees in Chapter 9. Figure 10.3 shows the
extended binary trees corresponding to the search trees of Figure 10.2.

Figure 10.3: Extended binary trees corresponding to search trees of Figure 10.2

We define the external path length of a binary tree to be the sum over all external
nodes of the lengths of the paths from the root to those nodes. Analogously, the internal
path length is the sum over ail internal nodes of the lengths of the paths from the root to

those nodes. The internal path length, 7, for the tree of Figure 10.3(a) is
I=0+1+1+2+3=7
Its external path length, E, is
E=2+2+4+4+3+2=17

Exercise 1 of this section shows that the internal and external path lengths of a
binary tree with n internal nodes are related by the formula £ =7 + 2n. Hence, binary
trees with the maximum E also have maximum 1. Over all binary trees with » internal
nodes, what are the maximum and minimum possible values for /? The worst case,
clearly, is when the tree is skewed (i.e., when the tree has a depth of n). In this case,

n—l
I=2=Yi=n(n-D2

i=0

To obtain trees with minimal I, we must have as many internal nodes as close to
the root as possible. We can have at most 2 nodes at distance 1, 4 at distance 2, and in
general, the smallest value for I is

O+2+[+4#2+8%3+ -+ +

One tree with minimal internal path length is the complete binary tree defined in
Section 5.2. If we number the nodes in a comiplete binary tree as in Section 5.2, then we
sec that the distance of node i from the root is | log,i |. Hence, the smallest value for /
is

Y. llogsi| = O(nlog,n)

1€i<n

Let us now return to our original problem of representing a static element set as a
binary search tree, Let a;,a,, <, a, with a; <a; < -+ < a, be the element keys.
Suppose that the probability of searching for each 4; is p;. The total cost of any binary
search tree for this set of keys is

Y pi-level(a;)

1<i<n

when only successful searches are made. Since unsuccessful searches (i.e., searches for
keys not in the table) will also be made, we should include the cost of these searches in
our cost measure, too. Unsuccessful searches ferminate with algorithm iterSearch (Pro-
gram 5.17) returning a O pointer. Every node with an empty subtree defines a point at
which such a termination can take place. Let us replace every empty subtree by a failure
node. The keys not in the binary search tree may be partitioned into r + 1 classes E;,
0<i<n E, contains all keys X such that X < a,. E; contains all keys X such that

Optimal Binary Search Trees 485

ai<X<ap, 1 <i<n, and E, contains all keys X, X > a,. It is easy to see that for all
keys in a particular class E;, the search terminates at the same failure node, and it ter-
minates at different failure nodes for keys in different classes. The failure nodes may be
numbered 0 to n, with i being the failure node for class E;, 0 <i <n. If g; is the probabil-
ity that the key being sought is in E;, then the cost of the failure nodes is

¥ g; (level(failure node i) — 1)
Osicn

Therefore, the total cost of a binary search tree is

Y pilevel(a) + Y g, - (level (failure node i) — 1) (10.1)
L<ign 0<ign
An optimal binary search tree for a|, - -, a, is one that minimizes Eq. (10.1) over all

possible binary search trees for this set of keys. Note that since all searches must ter-
minate either successfully or unsuccessfully, we have

Yo+ Yg=1

1=izn O<i<n

Example 10.2: Figure 10.4 shows the possible binary search trees for the key set
{aj,a,,a3)= (5, 10, 15). With equal probabilities, p; = g; = 1/7 for all i and j, we have

cost (tree a) = 15/7; cost (tree b) = 13/7
cost {tree ¢) = 15/7; cost (tree d) = 15/7
cost (tree e) = 15/7

As expected, tree b is optimal. With p, = 0.5, p; = 0.1, p3 = 0.05, g5 = 0.15, g, = 0.1,
g> = 0.05, and ¢4 = 0.05 we have

cost (tree @) = 2.65; cost (tree b) = 1.9
cost (tree) = 1.5; cost (tree d) = 2.05
cost (tree e) = 1.6

Tree ¢ is optimal with this assignment of p’s and ¢'s. O

How does one determine the optimal binary search tree? We could proceed as in
Example 10.2 and explicitly generate all possible binary search trees, then compute the
cost of each tree, and determine the tree with minimum cost. Since the cost of an n-node
binary search tree can be determined in O{r) time, the complexity of the optimal binary
search tree algorithm is O{n N (n)), where N (n) is the number of distinct binary search
trees with n keys. From Section 5.11 we know that N(n) = O@4" /n*?). Hence, this
brute-force algorithm is impractical for large n. We can find a fairly efficient algorithm
by making some observations about the properties of optimal binary search trees.

Leta: <a» < -+ < a. be the n keys to be represented in a binary search tree. Let

(<) d)

Figure 10.4: Binary search trees with three elements

T;; denote an optimal binary search tree for a;,,, - -, a;, { < j. By convention T is an
empty tree for 0 <i <n, and T; is not defined for i > j. Let c;; be the cost of the search

tree T;;. By definition c;; will be 0. Let r;; be the root of T}, and let

i
wy =g+ Y, (g + pp)
k=i+]
be the weight of Tj;. By definition r; =0, and w; = g;, 0<i <n. Therefore, Ty,is an
optimal binary search tree fora,, - -, a,. Its costis gy, its weight is wy,, and its root is
Fog-

Optimal Binary Search Trees 487

If T;; is an optimal binary search tree fora;,, -, a ', and ry; = k, then k satisfies
the incquality § <k <j. T; has two subtrees L and R. L is the left subtree and contains
the keys a;,y, ', a4_;, and R is the right subtree and contains the keys a;,,, -, a;
(Figure 10.5). The cost ¢;; of Tj; is

Cij = pi + cost (L} + cost (R) + weight (L) + weight (R) (10.2)

where weight (L) = weight (T, ;_;) = w;;_, and weight (R) = weight (Ty) = wy.

Figure 10.5: An optimal binary search tree 73;

From Eq. (10.2) it is clear that if ¢; is to be minimal, then cost(L) = ¢;;., and
cost(R) = Cij» A8 otherwise we could replace either L or R by a subtree with a lower cost,
thus getting a binary search tree for a;,, ‘-, a; with a lower cost than ¢;. This
violates the assumption that 7; is optimal. Hence, Eq. (10.2) becomes

Cij =PpHCigy FCpp + Wigy + Wy
=Wyt gy + G {10.3)
Since 7}; is optimal, it follows from Eq. (10.3) that r;; = k is such that
Wi+ Cijy ¥ 0 = Eg}{wij + ¢y +)
or

Cik-1 + € = 21;2‘_[01,1—1 + oy} ‘ (10.4)

Equation (10.4) gives us a means of obtaining T, and cg,. starting from the knowledge
that Tii = ¢ and Cy = 0.

Example 10.3: letn = 4 and (a..af_;,a3,a4) = (10, 15, 20, 25) Let (p1 Py P, P4) = (3,
3,1, 1) and (g9, 91, 92.93.94) = (2,3, 1, 1, 1). The p’s and ¢'s have been multiplied by
16 for convenience. Initially, w; =g;, c; =0, and r; =0, 0<i <4, Using Egs. (10.3)
and (10 AV we ast

Wor = Pr+wetw =p+gtwe=8

coi = wo +minf{cgy +cy} =8

rog = 1

Wi = Prtwpn+wp=prbgrtwy =7
Cip = Wwp+min{c; +cn}=7

rp = 2

Wy = PatWxn+wy=py+g;+wp=3
€33 = wy +minfcy +cxnl=3

rp = 3

Wis = Pa+Wiz+Way =pi+gq+wy=3
€34 = Wi +minfez; 44} =3

rys = 4

Knowing w;;,; and ¢,;,;,05i < 4, we can use Egs. (10.3) and (10.4) again to
COMPULE W;; 42, Ci 47, Fiia2, 0 <7 < 3. This process may be repeated until wyy, ¢4, and
ro4 are obtained. The table of Figure 10.6 shows the results of this computation. From
the table, we see that'cm = 32 is the minimal cost of a binary search tree for a, to a,.
The root of tree Ty is a5. Hence, the left subtree is Ty and the right subtree Toy. Ty
has root a; and subtrees Ty and Ty;. T4 has root as; its left subtree is therefore 75,
and right subtree Ty,. Thus, with the data in the table it is possible to reconstruct Ty,.
Figure 10.7 shows T4, O

Example 10.3 illustrates how Eq. (10.4) may be used to determine the ¢'s and #'s,
as well as how to reconstruct Ty, knowing the r’s. Let us examine the complexity of this
function to evaluate the ¢’s and r’s. The evaluation function described in Example 10.3
requires us to compute c;; for (f—i) =1, 2, -- -, nin that order. When j - i = m, there
are n —m + 1 ¢;’s to compute. The computation of each of these ¢;;’s requires us to find
the minimum of m quantities (see Eq. (10.4)). Hence, each such ¢;; can be computed in
time Ofm). The total time for all ¢;;’s with j —i = m is therefore O(nm — m?). The total
time to evaluate all the c;;’s and r;’s is

Y, (nm - m?) = O(n®)

l<m=n

Actually we can do better than this using a resuit due to D. E. Knuth that states
that the optimal [in Eq. (10.4) may be found by limiting the search to the range
rij-1 £1<ryy; In this case, the computing time becomes O(n?) (see Exercise 3).
Function obst (Program 10.1)} uses this result to obtain in O{n?) time the values of
Wy, Fj.and ¢;;, 0 < i < j < n. The actual tree Ty, may be constructed from the values of

Optimal Binary Search Trees 489

0 1 2 3 4
WDO=2 W”=3 W22=l W33=1 W44=1
0 Cop = C|1=0 6‘22=0 C33=0 C44=0
rm=0 r1]=0 r22=0 r33=0 1‘44=0

wor =8 | wip =7 | wp =3 wy =3
1l cop=8|co=7|cn=3]|cu=
rm:l r12=2 l"23=3 }”34=4

W02=]2 Wiy = 9 W24=5

2 C02=19 C13=]2 C24=8
re= 1 |ria= 2| rp=3
w03=l4 W14=Il

3 Co3=25 C|4=19
re= 2|rg= 2
W04=16

4 004=32
Tog = 2

Figure 10.6: Computation of cg4 and roq. The computation is carried out by row from
row 0 to row 4

Figure 10.7: Optimal binary search tree for Example 10.3

ri; in O(n) time. The algorithm for this is left as an exercise.

Function obst (Program 10.1) computes the cost ¢ [i][f]1 = ¢;; of optimal binary
search trees Tj; for keys a;,, " -, a;. It also computes r[i]{j] = r;, the root of T.
wiillj] =w; is the weight of T;;. The two-dimensional arrays ¢, r and w are global
arrays of type int. The inputs to this function are the success and failure probability
arrays, p[] and g|] and the number of keys r. The array elements p[0] and a(0] are not
used

void obst (double #*p, double *g, int n)
{
int i, 3§, k, m;
for (1 = 0; 1 < n; i++) {/* initialize */
/* 0-node trees */
wlil [1] = qli]; v([i)[i) = c[i][i] = ©¢;
/* one-node trees */
wli]l [i+1] = g[i] + g[i+1l] + p[i+1];

r{i] [i+1l] = 1 + 1;
clil[i+41] = w[i][i+1];
}
w[nl[n]l = gln]l; rinlfn] = ¢[nlin] = 0;

/* find optimal trees with m > 1 nodes */
for (m = 2; m <= n; m++)
for (i = 0Q; 1 <= n~ m; 1i++)
{
J=1+m
wiil [l = wiil[3-1) + p[3] + q[3l;
k = XnuthMin (i, j);
/* KnuthMin returns a value k in the range
(x[i] [J-11, z[i+11[3j]]) minimizing
cf{il [(k-1i+cik] [j) */
clil[j] = w{ilfj) + cl{ilik-11 + clk][3];
/* Eq. (10.3) */
r(i] (3] = k;

}

Program 10.1: Finding an optimal binary search tree

AVL Trees 491

EXERCISES

2.

(a) Prove by induction that if T is a binary tree with n internal nodes, I its inter-
nal path length, and E its external path length, then E =T + 2n,n 20,

(by Using the result of (a), show that the average number of comparisons s in a
successful search is related to the average number of comparisons, «, in an
unsuccessful search by the formula

s=(l+1/mu-1,n=1

Use function obst (Program 10.1), to compute w;;, ry;, and ¢;;, 0 < i < j < 4, for the
key set (a,, a3, a3, as) = (5, 10, 15, 20), with p; = 1220, p, = 1/5, p3 = 1/10,
Pa=1720, go =155, q, = 1/10, g, = 1/5, g5 = 1720, and ¢4 = 1/20. Using the
r;;’s, construct the optimal binary search tree.

(a) Complete function obst by providing the code for function KnuthMin.
(b) Show that the computing time complexity of obst is O(n?).

(c) Write a C function to construct the optimal binary search tree T, given the
roots r;, 0 €£i < j <n. Show that this can be done in time O(r).

Since, often, only the approximate values of the p’s and ¢’s are known, it is
perhaps just as meaningful to find a binary search tree that is nearly optimal (i.e.,
its cost, Eq. (10.1), is almost minimal for the given p’s and ¢’s). This exercise
explores an O{n log n) algorithm that results in nearly optimal binary search trees.
The search tree heuristic we shall study is

Choose the root a, such that |wg ... — wy,| is as small as possible. Repeat this
process to find the left and right subtrees of a,,.

(a) Using this heuristic obtain the resulting binary search tree for the data of
Exercise 2. What is its cost?

{b) Write a C function implementing the above heuristic. The time complexity
of your function should be O(n log n).

An analysis of the performance of this heuristic may be found in the paper by
Mehlhom (se= the References and Selected Readings section).

10.2 AVL TREES

Dynamic collections of elements may also be maintained as binary search tress. In
Chapter 5, we saw how insertions and deletions can be performed on binary search trees.
Figure 10.8 shows the binary search tree cbtained by eniering the months JANUARY to
DECEMBER in that order into an initially empty binary search tree by using function

insert (Program 5.21).

AUG (TuLy SEPT

R

CISE(D oCT
@ov

Figure 10.8: Binary search tree obtained for the months of the year

The maximum number of comparisons needed to search for any key in the tree of
Figure 10.8 is six for NOVEMBER. The average number of comparisons is (1 for
JANUARY + 2 each for FEBRUARY and MARCH + 3 each for APRIL, JUNE and
MAY + .-+ + 6 for NOVEMBERY 12 = 42/12 = 3.5. If the months are entered in the
order JULY, FEBRUARY, MAY, AUGUST, DECEMBER, MARCH, OCTOBER,
APRIL, JANUARY, JUNE, SEFTEMBER, NOVEMBER, then the tree of Figure 10.9 s
obtained. '

The tree of Figure 10.9 is well balanced and does not have any paths to a leaf node
that are much longer than others. This is not true of the tree of Figure 10.8, which has
six nodes on the path from the root to NOVEMBER and only two nodes on the path to
APRIL. Moreover, during the construction of the tree of Figure 10.9, ali intermediate
trees obtained are also well balanced. The maximum number of key comparisons needed
to find any key is now 4, and the average is 37/12 = 3.1. If the months are entered in lex-
icographic order, instead, the tree degenerates to a chain as in Figure 10.10. The max-
imum search time is now 12 key comparisons, and the average is 6.5, Thus, in the worst
case, searching a binary search tree corresponds to sequential searching in a sorted linear
list. When the keys are entered in a random order, the wee tends to be balanced as in

AVL Trees 493

}Li

% Qmié% }CT

(AP@ @EC) (1 NOV> @E@

Figure 10.9: A balanced tree for the months of the year

Figure 10.9. If all permutations are equally probable, then the average search and inser-
tion time is O(log ») for an n-node binary search tree.

From our earlier study of binary trees, we know that both the average and max-
imuom search time will be minimized if the binary search tree is maintained as a complete
binary tree at all times. However, since we are dealing with a dynamic situation, it is
difficult to achieve this ideal without making the time required to insert a key very high.
This is so because in some cases it would be necessary to restructure the whole tree to
accommodate the new entry and at the same time have a complete binary search tree. It
is, however, possible to keep the tree balanced to ensure both an average and worst-case
search time of O(log n) for a tree with n nodes. In this section, we study one method of
growing balanced binary trees. These balanced trees will have satisfactory search, inser-
tion and deletion time properties. Other ways to maintain balanced search trees are stu-
died in later sections.

In 1962, Adelson-Velskii and Landis introduced a binary tree structare that is bal-
anced with respect to the heights of subtrees. As a result of the balanced nawre of this
type of tree, dynamic retrievals can be performed in O(log #) time if the tree has » nodes
in it. At the same time, a new key can be entered or deleted from such a tree in time
O(log n). The resulting tree remains height-balanced. This tree structure is called an
AVL tree. As with binary trees, it is natural to define AVL trees recursively.

Definition: An empty tree is height-balanced. If T is a nonempty binary tree with T}
and Ty as its left and right subtrees respectively, then T is height-balanced iff (1) T, and
Ty are height-balanced and (2) | h; — kg | <1 where h; and Ay are the heights of T; and
Ty, respectively. O

Figure 10.10: Degenerate binary search tree

The definition of a height-balanced binary tree requires that every subtree also be
height-balanced. The binary tree of Figure 10.8 is not height-balanced, since the height
of the left subtree of the tree with root APRIL is 0 and ihat of the right subtree is 2. The
tree of Figure 10.9 is height-balanced while that of Figure 10.10 is not, To illustrate the
processes involved in maintaining a height-balanced binary search tree, let us try to con-
struct such a tree for the months of the year. This time let us assume that the insertions
are mede in the following order: MARCH, MAY, NOVEMBER, AUGUST, APRIL,
JANUARY, DECEMBER, JULY, FEBRUARY, JUNE, OCTOBER, SEPTEMBER. Fig-
ure 10.11 shows the tree as it grows and the restructuring involved in keeping the tree
balanced. The numbers ahove each node represent the difference in heights between the
left and right subtrecs of that node. This number is referred to as the balance factor of
the node.

AVL Trees 495

0 -1
o (A
0

(a) Insert MARCH (b) Insert MAY

) 0

MAR MAY
-1 RR 0 - 0 .
L
MAY @AR) @ov
0 _ _
(c) Insert NOV
+1
MAY

+] — 0
M@ NOV>
0 _ _

(d) Insert AUGUST

LL 'AUG N@
0 0
T B
APR @AR
. (aPR) (MaR)

{e) Insert APRIL

Figure 10.11: Balanced trees obtained for the months of the year (continued on next
page)

0
SCOM N C RN

(Kﬁﬁ;) ’(J)Al\? Yy C NOV)

(f) Insert JANUARY

{g) Insert DECEMBER (h) Insert JULY

Figure 10.11: Balanced trees obtained for the months of the year (continued on next
page)

Definition: The balance factor, BF (T), of a node T in a binary tree is defined to be #; -
hy, where fi; and hg, respectively, are the heights of the left and right subtrees of . For
any node T'in an AVL tree, BF (T} =-1,0,0r 1. U

Inserting MARCH and MAY results in the binary search trees (a) and (b) of Figure
10.11. When NOVEMBER is inserted into the tree, the height of the right subtree of
MARCH becomes 2, whereas that of the left subtree is 0. The tree has become unbal-
anced. To rebalance the tree, a rotation is performed. MARCH is made the left child of
MAY, and MAY becomes the root {Figure 10.11(c)}. The introduction of AUGUST
leaves the tree balanced (Figure 10.11(d)).

The next insertion, APRIL, causes the tree to become unbalanced again. To

AVL Trees 497

+1

_RL y@ = 0 @‘%
JCONCORNCT)
CONGONCT

(i) Insert FEBRUARY
0
JAN
-1 +I - 0
ﬁ_L_‘L. e \>:L
MAY DEC MAR
AUGY (TAN -@pi) AUG® Qﬁ%)an @?w
00 _,_,«1 o N <~n 0 <0

(apR) (FEB) (ULv) =~ (PR (uNE) (Nov)

(j) Insert JUNE

Figure 10.11: Balanced trees obtained for the months of the year (continued on next
page)

rebalance the tree, another rotation is performed. This time, it is a clockwise rotation.
MARCH is made the right child of AUGUST, and AUGUST becomes the root of the
subtree {Figure 10.11(e)). Note that both of the previous rotations were carried out with
respect to the closest parent of the new node that had a balance factor of £2. The inser-
tion of JANUARY results in an unbalanced tree. This time, however, the rotation
involved is somewhat more complex than in the earlier situations. The common point,

however, is that the rotation is still carried out with respect to the nearest parent of
JANUARY with a balance factor +2, MARCH becomes the new root. AUGUST,
together with its left subtree, becomes the left subtree of MARCH. The left subtree of
MARCH becomes the right subtree of AUGUST. MAY and its right subtree, which have
keys greater than MARCH, become the right subtree of MARCH. (If MARCH had had a
nonempty right subtree, this could have become the left subtree of MAY, since all keys
would have been less than MAY.)

Inserting DECEMBER and JULY necessitates no rebalancing. When FEBRU-
ARY is inserted, the tree becomes unbalanced again. The rebalancing process is very
similar to that used when JANUARY was inserted. The nearest parent with balance fac-
tor 2 is AUGUST. DECEMBER becomes the new root of that subtree. AUGUST, with
its left subtree, becomes the left subtree. JANUARY, with its right subtree, becomes the
right subtree of DECEMBER; FEBRUARY becomes the left subtree of JANUARY. (If
DECEMBER had had a left subtree, it would have become the right subtree of
AUGUST.) The insertion of JUNE requires the same rebalancing as in Figure 10.11(f).
The rebalancing following the insertion of OCTOBER is identical to that following the
insertion of NOVEMBER. Inserting SEPTEMBER leaves the tree balanced.

In the preceding example we saw that the addition of a node to a balanced binary
search tree could unbalance it. The rebalancing was carried out using four different
kinds of rotations: LL, RR, LR, and RL (Figure 10.11 {e), (¢}, (f), and (i), respectively).
LL and RR are symmetric, as are LR and RL. These rotations are characterized by the
nearest ancestor, A, of the inserted node, ¥, whose balance factor becomes £2. The fol-
lowing characterization of rotation types is obtained:

LL: new node ¥ is inserted in the left subtree of the left subtree of A
LR; Yisinserted in the right subtree of the left subtree of A

RR: Yisinserted in the right subtree of the right subtree of A

RL: Yis inserted in the left subtree of the right subtree of A

A moment’s reflection will show that if a height-balanced binary tree becomes
unbalanced as a result of an insertion, then these are the only four cases possible for
rebalancing. Figures 10.12 and 10.13 show the LL and LR rotations in terms of abstract
binary trees. The RR and RL rotations are symmetric. The root node in each of the trees
of the figures represents the nearest ancestor whose balance factor has become +2 as a
result of the insertion. In the example of Figure 10.11 and in the rotations of Figures
10.12 and 10.13, notice that the height of the subtree involved in the rotation is the same
after rebalancing as it was before the insertion. This means that once the rebalancing has
been carried out on the subtree in question, examining the remaining tree is unnecces-
sary. The only nodes whose balance factors can change are those in the subtree that is
rotated.

The transformations done to remedy LL and RR imbalances are often called single
rotations, while those done for LR and RIL imbalances are called double rotations. The

AVL Trees 499

(1) Insert SEPTEMBER

Figure 10.11: Balanced trees obtained for the months of the year

transformation for an LR imbalance can be viewed as an RR rotation followed by an LL
rotation, while that for an RL imbalance can be viewed as an 1L rotation followed by an
RR rotation.

To carry out the rotations of Figures 10.12 and 10.13, it is necessary to locate the
node A around which the rotation is to be performed. As remarked earlier, this is the
nearest ancestor of the newly inserted node whose balance factor becomes 2. For a
node’s balance factor to become 2, its balance factor must have been 1 before the
insertion. Therefore, before the insertion, the balance factors of all nodes on the path

By Bg Ar
h h h+1 h h h
(a) Before insertion {b) After inserting into B; {c) After LI rotation

Balance factors are inside nodes
Subtree heights are below subtree names

Figure 10.12: An LL rotation

from A to the new insertion point must have been 0. With this information, the node A is
readily determined to be the nearest ancestor of the new node having a balance factor *1
before insertion. To complete the rotations, the address of F, the parent of A, is also
neceded. The changes in the balance factors of the relevant nodes are shown in Figures
10.12 and 10.13. Knowing F and A, these changes can be carried out easily.

‘What happens when the insertion of a node does not result in an unbalanced tree
(see Figure 10.11 (a), {b), (d), (g), (h), and (1))? Although no restructuring of the tree is
needed, the balance factors of several nodes change. Let A be the nearest ancestor of the
new node with balance factor +1 before insertion. If, as a result of the insertion, the tree
did not get unbalanced, even though some path length increased by 1, it must be that the
new balance factor of A is 0. If there is no ancestor A with a balance factor *1 (as in Fig-
ure 10.11 (a), (b), {d}, (g), and (1)), let A be the root. The balance factors of nodes from A
to the parent of the new node will change to t1 (see Figure 10.11 {(h); A= JANUARY).
Note that in both cases, the procedure to determine A is the same as when rebalancing is
needed. The remaining details of the insertion-rebalancing process are spelled out in
function avilnsert (Program 10.2). The function leftRotation (Program 10.3) gives the
code for the LL and LR rotations. The code for the RR and RL rotations is symmetric and
we leave it as an exercise. The type definitions in use are:

AYL Trees 501

&) Cr

{a) Before insertion (b) After inserting into By (c) After LR rotation

b=0=bf (B)=bf (A)=0 after rotation
b=1=bf (B)=0 and bf (A)=—1 after rotation
b=—1=bf (B)=1 and bf (A)=0 after rotation

Figure 10.13: An LR rotation

typedef struct {
int key;
} element;
typedef struct treeNode *treePointer;

struct {
treePointer leftChild;
element data;

short int bf;
treePointer rightChild;
} treeNcde;

The pointer to the tree root is set to NULL before to the first call of aviinsert. We also
set unbalanced to FALSE before each call to aviinserr. The function call is
aviinsert(&root, x, &unbalanced).

To really understand the insertion algorithm, you should apply it to the example of
Figure 10.11. Once you are convinced that it keeps the tree balanced, then the next
question is how much time does it take to make an insertion? An analysis of the algo-
rithm reveals that if 4 is the height of the tree before insertion, then the time to insert a

void avlInsert(treePcinter *parent, element X,
int *unbalanced)}
{
if (!*parent) {/* insert element into null tree */
*unbalanced = TRUE;
MALLCOC (*parent, sizeof (treeNode));
(*parent)—leftChild =
(*parent)—srightChild = NULL;
(*parent) ->bf = 0; (*parent}—data = x;
}
else if (x.key < (*parent)-sdata.key) |
avlInsert (& (*parent)—leftChild, x, unbalanced) ;
if {*unbalanced)
/* left branch has grown higher */
switch ((*parent)—bf) {
case —1: (*parent)—bf = 0;
*unbalanced = FALSE; break;
case 0: (*parent})—bf = 1; break;
case 1: leftRotation{parent,unbalanced};

}
else if (x.key > (*parent)—data.key} {
avlInsert (& (*parent)—SrightChild, x, unbalanced);
if (*unbkalanced)
/* right branch has grown higher */
switch((*parent)-sbf) |

case 1 : (*parent)—bf = 0;
*unbalanced = FALSE; break;
case 0 : (*parent})—bf = -1; break;

case —1: rightRotation(parent, unbalanced);

}
else {
*unbalanced = FALSE;
printf("The key is already in the tree");

}

Program 10.2: Insertion into an AVL tree

AVL Trees 503

void leftRotation(treePointer *parent, int *unbalanced})
{
treePointer grandChild, child;
child = {(*parent)—leftChild;
if (child—bf == 1) {
/* LL rotaticn */
(*parent)=—leftChild = chiid—rightChild;
child—rightChild = *parent;
(*parent)—bf = 0;
(*parent) = child;
}
else |
/* LR rotation */
grandChild = child—rightlhild;
child—rightChild = grandChild—leftChild;
grandChild=—leftChild = child;
(*parent)—leftChild = grandChild—rightChild;
grandChild—rightChild = *parent;
switch{grandChild—bf) {
case 1l: {*parent)—obf
child—bf = 0;
break;
case 0: {*parent)—obf
break;
case —-1: (*parent)—bf = 0;
child—bf = 1;

child—bf = 0;

}
*parent = grandChild;
}
(*parent)—=bf = 0;
*unbalanced = FALSE;
1

Program 10.3: Left rotation function

new identifier is O(k). This is the same as for unbalanced binary search trees, although
the overhead is significantly greater now. In the case of binary search trees, however, if
there were n nodes in the tree, then & could be n (Figure 10.10) and the worst case inser-
tion time would be O(n). In the case of AVL trees, since A 15 at most O(log 1), the worst
case insertion time is O(log r). To see this, let &, be the minimum number of nodes in a

height balanced tree of height - In the worst case. the height of one of the subtrees is
h — 1 and the height of the other is & — 2. Both these subtrees are also height balanced.
Hence, N, =N, +N, >+ 1 and Ny =0, N; =1 and N- =2. Notice the similarity
between this recursive definition for N, and the definition of the Fibonacci numbers
F,=F,_|+F,, Fy;=0, and F;=1. In fact, we can show (Exercise 2) that
N, = Fy,, =1 for h 20. From Fibonacci number theory we know that F, = ¢" /+/5
where ¢ = (I + \5)/2. Hence, N, = ¢"*> /5 — |. This means that if there are » nodes in
the tree, then its height, A, is at most]0g¢ {(¥5(r + 1)} = 2. Therefore, the worst case
insertion time for a height balanced tree with n nodes i1s O{log n).

The exercises show that it is possible to find and delete an element with a specified
key and to find and delete the element with the kth smallest key from a height-balanced
tree in O(log n) time, Results of an empirical study of deletion in height-balanced trees
may be found in the paper by Karlton et al. (see the References and Selected Readings
section). Their study indicates that a random insertion requires no rebalancing, a
rebalancing rotation of type LL or RR, and a rebalancing rotation of type LR and RL,
with probabilities 0.5349, 0.2327, and 0.2324, respectively. Figure 10.14 compares the
worst-case times of certain operations on sorted sequential lists, sorted linked lists, and
AVL trees.

Operation : Sequential list Linked list AVL tree

Search for element with key & : Olog n) Ofn) O(log n)

Search for jth item ;O O O(log n)

Delete element with key & o) oy O(log n)

Delete jih element I O —j) O() O(log n)

Insert L On) o1y’ O(log n)
| Qutput in order L Q) O(n) O(n)

I. Doubly linked list and position of £ known
2. Position for insertion known

Figure 10.14: Comparison of various structures

EXERCISES

1. (a) Convince yourself that Figures 10.12 and 10.13 together with the cases for
the symmetric rotations RR and RL takes care of all the possible situations
that may arise when a height-balanced binary tree becomes unbalanced as a
result of an insertion. Alternatety, come up with an example that is not
covered by any of the cases in this figure.

AVL Trees 505

(by Draw the transformations for the rotation rypes RR and RL.

Show that the LR rotation of Figure 10.13 is equivalent 1o an RR rotation followed
by an LL rotation and that an RL rotation is equivalent to an LL rotation followed
by an RR rotation.

Prove by induction that the minimum number of nodes in an AVL tree of height 4
SNy =Fppr— LAZ0.

Complete avilnserr (Program 10.2) by filling in the code needed to rebalance the
tree in case of a right imbalance.

Start with an empty AVL tree and perform the following sequence of insertions:
DECEMBER, JANUARY, APRIL, MARCH, JULY. AUGUST, OCTOBER,
FEBRUARY, NOVEMBER, MAY, JUNE. Use the sirategy of avilnsert (o per-
form each insert. Draw the AVL tree following each insertion and state the rota-
tion type (if any) for each insert.

Assume that each node in an AVL tree has the data member Isize. For any node,
a, a —lsize is the number of nodes in its left subtree plus one. Write a C function
to Tocate the kth smallest key in the tree. Show that this can be done in Olog n)
time if there are # nodes in the tree.

Rewrite the insertion function avilnsert with the added assumption that each node
has an lsize data member as in Exercise 6. Show that the insertion time remains
O(log n).

Write a C function to list the elements of an AVL tree in ascending order of key.
Show that this can be done in O(r) time if the tree has n nodes.

Write an algorithm o delete the element with key k from an AVL tree. The result-
ing tree should be restructured if necessary. Show that the time required for this is
O(log n) when there are n nodes in the tree. [Hint: If £ is not in a leaf, then replace
k by the largest value in its left subtree or the smallest value in its right subtrec.
Continue until the deletion propagates to a leaf. Deletion from a leaf can be han-
dled using the reverse of the transformations used for insertion.]

Do Exercise 9 for the case when each node has an /size data member and the kth
smallest key is to be deleted.

Complete Figure 10.14 by adding a column for hashing.

For a fixed k, k = 1, we define a height-balanced tree HB (k) as below:

Definition: An empty binary trce is an #B (k) tree. 1f T is a nonempty binary trce
with T, and T as its left and right subtrees, then T is HB (k) iff (a) T, and T are
HB(k) and (b) | hy —hp| <k, where h; and hp are the heights of 7} and Ty,
respectively. O

(a) Obtain the rebalancing transformations for HB (2).
(b) Write an insertion algorithm for HB (2) trees.

10.3 RED-BLACK TREES

10.3.1 Definition

A red-black tree is a binary search tree in which every node is colored either red or
black. The remaining properties satisfied by a red-black tree are best stated in terms of
the corresponding extended binary tree. Recall, from Section 9.2, that we obtain an
extended binary tree from a regutar binary tree by replacing every null pointer with an
external node. The additional properties are

RB1. The root and alt external nodes are colored black.
RB2. No root-te-external-node path has two consecutive red nodes.

RB3. All root-to-external-node paths have the same number of black nodes.

An equivalent definition arises from assigning colors to the pointers between a
node and 1ts children. The pointer from a parent to a black child is black and to a red
child is red. Additionally,

RB1°. Pointers from an internal node to an external node are black.
RB2’, No root-to-external-node path has two consecutive red pointers.
RB3". All root-to-external-node paths have the same number of black pointers.

Notice that if we know the pointer colors, we can deduce the node colors and vice
versa. In the red-black tree of Figure 10.15, the external nodes are shaded squares, black
nodes are shaded circles, red nodes are unshaded circles, black pointers are thick lines,
and red pointers are thin lines. Notice that every path from the root to an external node
has exactly two black pointers and three black nodes (including the root and the external
node); no such path has two consecutive red nodes or pointers.

Let the rank of a node in a red-black tree be the number of black pointers
(equivalently the number of black nodes minus 1) on any path from the node to any
external node in its subtree, So the rank of an external node is 0. The rank of the root of
Figure 10.15 is 2, that of its left child is 2, and of its right child is 1.

Lemma 10.1: Let the length of a root-to-external-node path be the number of pointers
on the path. If P and Q are two root-to-external-node paths in a red-black tree, then
length (P) < 2length (Q).

Proof: Consider any red-black tree. Suppose that the rank of the root is ». From RBI
the last pointer on each root-to-external-node path is black. From RB2 " no such path has
two consecutive red pointers. So each red pointer is followed by a black pointer. As a

Red-Black Trees 507

Figure 10.15: A red-black tree

result, each root-to-external-node path has between r and 2r pointers, so length (P) <
2length (). To see that the upper bound is possible, consider the red-black tree of Fig-
ure 10.15. The path from the root to the left child of 5 has length 4, while that to the
right chiid of 80 has length 2, O

Lemma 10.2: Lert & be the height of a red-black tree (excluding the external nodes), let
n be the number of internal nodes in the tree, and let » be the rank of the root.

(a) h<2r
(b} n=2-1
{©) h<2log(n+1)

Proof: From the proof of Lemma 10.1, we know that no root-to-external-node path has
length > 2r, so h <2r. (The height of the red-black tree of Figure 10.15 with external
nodes removed is 2r=4.)

Since the rank of the root is r, there are no external nodes at levels 1 through r, so
there are 2'—1 internal nodes at these levels. Consequently, the total number of intemnal
nodes is at least this much. (In the red-black tree of Figure 10.15, levels 1 and 2 have 3 =
221 internal nodes. There are additional internal nodes at levels 3 and 4.)

From (b) it follows that r < log,{n+1). This inequality together with (a) yields {c).
O

Since the height of a red-black tree is at most 2log-(n+1), search, insert, and

delete algorithms that work in O(k) time have complexity O(log n).

Notice that the worst-case height of a red-black tree is more than the worst-case height
(approximately 1.44log.(n +2)) of an AVL tree with the same number of (internal)
nodes.

10.3.2 Representation of a Red-Black Tree

Although it is convenient to include external nodes when defining red-black trees, in an
implementation null pointers, rather than physical nodes, represent external nodes.
Further, since pointer and node colors are closely related, with each node we need to
store only its color or the color of the two pointers 1o its children. Node colors require
just one additional bit per node, while pointer colors require two. Since both schemes
require almost the same amount of space, we may choose between them on the basis of
actual run times of the resuiting red-black tree algorithms.

In our discussion of the insert and delete operations, we will explicitly state the
needed color changes only for the nodes. The corresponding pointer color changes may
be inferred.

10.3.3 Searching a Red-Black Tree

We can search a red-black tree with the code we used to search an ordinary binary search
tree {Program 5.17). This code has complexity O(h), which is O(log n) for a red-black
tree. Since we use the same code to search ordinary binary search trees, AVL trees, and
red-black trees and since the worst-case height of an AVL tree is least, we expect AVL
trees 1o show the best worst-case performance in applications where search is the dom-
inant operation.

10.3.4 Inserting into a Red-Black Tree

Elements may be inserted using the strategy used for ordinary binary trees (Program
5.21). When the new node is attached to the red-black tree, we need to assign the node a
color. If the tree was empty before the insertion, then the new node is the root and must
be colored black (see property RB1). Suppose the tree was not empty prior to the inser-
tion. If the new node is given the color black, then we will have an extra black node on
paths from the root to the external nodes that are children of the new node. On the other
‘hand, if the new node is assigned the color red. then we might have two consecutive red
nodes. Making the new node black is guaranteed to cause a violation _of property RB3,
while making the new node red may or may not violate property RB2. We will make the

Red-Black Trees 509

new node red.

If making the new node red causes a violation of property RB2, we will say that
the tree has become imbalanced. The nature of the imbalance is classified by examining
the new node u, its parent pu, and the grandparent gu of u. Observe that since property
RRB2 has been violated, we have two consecutive red nodes. Cne of these red nodes is u,
and the other must be its parent; therefore, pu exists. Since pu is red, it cannot be the
root (as the root is black by property RB1); u# must have a grandparent g, which must be
black {(property RB2). When pu is the left child of gu. is the left child of pr and the
other child of gu is black (this case includes the case when the other child of gu is an
external node); the imbalance is of type LLb. The other imbalance types are LLr (pu is
the left child of gu, u is the left child of pu, the other child of gu is red), LRb {(pu is the
left child of gu, u is the right child of pu, the other child of gu is black). LRr, RRb, RRr,
RLb, and RLr.

Imbalances of the type XYr (X and Y may be L or R} are handled by changing
colors, while those of type XYb require a rotation. When we change a color, the RB2
violation may propagate two levels up the tree. In this case we will need to reclassify at
the new level, with the new u being the former gu, and apply the transformations again.
When a rotation is done. the RB2 violation is taken care of and no further work is
needed,

Figure 10.16 shows the color changes performed for LLr and LRr imbalances;
these color changes are identical. Black nodes are shaded, while red ones are not. In
Figure 10.16(a), for example, gu is black, while pu and u are red; the pointers from gu to
its left and right children are red; guy is the right subtree of gu; and pug is the right sub-
tree of pu. Both LLr and LRr color changes require us to change the color of pu and of
the right child of gu from red to black. Additionally, we change the color of gu from
black to red provided gu is not the root. Since this color change is not done when gu is
the root, the number of black nodes on all root-to-external-node paths increases by |
when gu is the root of the red-black tree.

If changing the color of gu to red causes an imbalance, gu becomes the new u
node, its parent becomes the new pu, its grandparent becomes the new gu, and we con-
tinue to rebalance. If gu is the root or if the color change does not cause an RB2 viola-
tion a1 gu, we are done.

Figure 10.17 shows the rotations performed 1o handle LLb and LRb imbalances.
In Figures 10.17(a) and (b), u is the root of pu,. Notice the similarity between these
rotations and the LL (refer to Figure 10.12) and LR (refer to Figure 10.13) rotations used
to handle an imbalance following an insertion in an AVL tree. The pointer changes are
the same. In the case of an LLb rotation, for example, in addition to pointer changes we
need to change the color of gu from black to red and of pu from red to black.

In examining the node (or pointer) colors after the rotations of Figure 10.17, we
see that the number of black nodes (or pointers) on all root-to-external-node paths is
unchanged. Further, the root of the involved subtree (gu before the rotation and pu after)
is black following the rotation; therefore, two consecutive red nodes cannot exist on the

gu

pu 8ug

Uy, Up

(a) LLr imbalance

gu
pu 8lg
pu; u
Uy, ip

(c) LRr imbalance

g

pu 8up

Hy Up

{(b) After LLr color change

gu
pu 8Ug
pug u
iy ug

(d) Afier LRr color change

Figure 10.16: LLr and LRr color changes

path from the tree root {o the new pu. Consequently, no additional rebalancing work is
to be done. A single rotation (preceded possibly by O(log n) color changes) suffices to

restore balance following an insertion!

Example 10.4: Consider the red-black tree of Figure 10.18(a). External nodes are
shown for convenience. In an actual implementation, the shown black pointers to exter-
nal nodes are simply null pointers and external nodes are not represented. Notice that all
root-to-external-node paths have three black nodes (including the external node) and two

black pointers,

Red-Black Trees 511

gu pu
pu 8ug puy gu
puy, Pug Pig By
(a) LLb imbalance (b) After LLb rotation
gu
pu Slg i
puy [/ pu gu
iy Ug P Hy, Up gug
(c) LRb imbalance (d) After LRb rotation

Figure 10.17: LLb and LRb rotations for red-black insertion

To insert 70 into this red-black tree, we use the algorithm of Program 5.18. The
new node is added as the left child of 80. Since the insertion is done into a nonempty
tree, the new node is assigned the color red. So the pointer to it from its parent (80} is
also red. This insertion does not result in a violation of property RB2, and no remedial
action is necessary, Notice that the number of black pointers on all root-to-external-
node paths is the same as before the insertion.

Next insert 60 into the tree of Figure 10.18(b). The algorithm of Program 5.18
attaches a new node as the left child of 70, as is shown in Figure 10.18(c). The new node
is red, and the pointer to it is also red. The new node is the « node, its parent (70) is pu,
and its grandparent (80) is gu. Since pu and u are red, we have an imbalance. This
imbalance is classified as an LLr imbalance (as pu is the left child of gu, u is the left
child of pu, and the other child of gu is red). When the LLr color change of Figure
10.16(a) and (b) is performed, we get the tree of Figure 10.18(d). Now u, pu, and gu are

' (c) Insert 60 (d) LLr color change

4\/ .
1w 65)

Y

(e) Insert 65 (f) LRb rotation

Figure 10.18: Insertion into a red-black tree (continued on next page)

Red-Black Trees 513

each moved two levels up the tree. The node with 80 is the new u node, the root
becomes pu, and gu is NULL. Since there is no gi node, we cannot have an RB2 imbal-
ance at this location and we are done. All root-to-external-node paths have exactly two
black pointers.

Now insert 65 into the tree of Figure 10.18(d). The result appears in Figure
10.18¢¢). The new node is the « node. Tts parent and grandparent are, respectively, the
pu and gu nodes. We have an L.Rb imbalance that requires us to perform the rotation of
Figures 10.17(c) and (d). The result is the tree of Figure 10.18(f).

{i) RLb rotation

Figure 10.18: Inscrtion into a red-black tree

Finally, insert 62 to obtain the tree of Figure 10.18(g). We have an LRr imbalance
that requires a color change. The resulting tree and the new u. pu, and gu nodes appear

in Figure 10.18(h). The color change just performed has caused an RLb imbalance two
levels up, so we now need to perform an RLb rotation. The rotation results in the tree of
Figure 10.18(i). Following a rotation, no further work is needed, and we are done. [

10.3,5 Deletion from a Red-Black Tree

The development of the deletion transformations is left as an exercise.

10.3.6 Joining Red-Black Trees

In Section 5.7.5, we defined the following operations on binary search trees: rhreeWay-
Join, twoWayJoin, and split. Each of these can be performed in logarithmic time on red-
black trees. The operation threeWayJoin (A, x, B) (A corresponds to small, x to mid, and
B 10 big) can be performed as follows.

Case 1: If A and B have the same rank, then let C be constructed by creating a new root
with pair x, leftChild A, and rightChild B. Both links are made black. The rank
of C is one more than the ranks of A and 5.

Case 2: If rank(A) > rank (B), then follow rightChild pointers from A to the first node
Y that has rank equal to rank(B). Properties RBl to RB3 guarantee the
existence of such a node. Let p(¥) be the parent of ¥. From the definition of ¥,
it follows that rank (p (Y)) = rank(¥) + 1. Hence, the pointer from p(¥)to ¥is
a black pointer. Create a new node, Z, with pair x, leftChild ¥ (i.e., node Y and
its subirees become the left subtree of Z} and rightChild B. Z is made the right
child of p (¥}, and the link from p (¥) to Z has color red. The links from Z to its
children are made black. Note that this transformation does not change the
number of black pointers on any root-to-external-node path. However, it may
cause the path from the root to Z to contain two consecutive red pointers. If
this happens, then the transformations used to handle this in a bottom-up inser-
tion are performed. These transformations may increase the rank of the tree by
one.

Case 3: The case rank (A) < rank (B) is sitnilar to Case 2.

Analysis of threeWayJoin: The correctness of the function just described is easily esta-
blished. Case 1 takes (1) time: each of the remaining two cases takes
Ol rank (A) — rank ('B) i) time under the assumption that the rank of each red-black tree
is known prior to computing the join. Hence, a three-way join can be done in O(log n)
time, where n is the number of nodes in the two trees being joined. A two-way join can
be performed in a similar manner. Note that there is no need to add parent data
members to the nodes to perform a join, as the needed parents can be saved on a stack as
we move from the root to the node ¥,

Red-Black Trees 515

A two-way join may be done in a similar fashion.

10.3.7 Splitting a Red-Black Tree

We now turn our attention to the split operation. Assume for simplicity that the splitting
key, i, is actuailly present in the red-black tree A. Under this assumption, the split opera-
tion split (A, i, B, x, C) {see Section 5.7.5, A corresponds to theTree, | 10 k, B to small, x
to mid, and C to big) can be performed as in Program 10.4.

Step 1: Search A for the node P that contains the element with key i. Copy this
element to the parameter mid. Initialize B and C to be the left and right
subtrees of P, respectively.

Step 2:
for (Q = parent{P); Q; P = Q, Q = parent (Q))
if (P == Q—leftChild)
C = threeWayJdoin(C, Q—data, Q—rightChild)
else B = threeWayJoin{(Q—leftChild, Q—data, B);

Program 10.4: Splitting a red-black tree

We first locate the splitting element, x, in the red-black tree. Let P be the node that
contains this element. The left subtree of P contains elements with key less than i. B is
initialized to be this subtree. All elements in the right subtree of P have a key larger than
i, and C is initialized to be this subtree. In Step 2, we trace the path from P to the root of
the red-black tree A. During this traceback, two kinds of subtrees are encountered. One
of these contains elements with keys that are larger than { as well as all keys in C. This
happens when the traceback moves from a left child of a node to its parent. The other
kind of subtree contains elements with keys that are smatler than f, as well as smaller
than all keys in B. This happens when we move from a right child to its parent. In the
former case a three-way join with C is performed, and in the latter a three-way join with
B is performed. One may verify that the two-step procedure outlined here does indeed
implement the split operation for the case when i is the key of an element in the tree A.
1t is easily extended to handle the case when the tree A contains no element with key i.

Analysis of split: Call a node red if the pointer to it from its parent is red. The root and
all nodes that have a black pointer from their parent are black. Let r(X) be the rank of
node X in the unsplit tree. First, we shall show that during a split, if P is a black node in
the unsplit tree, and @ = 0, then

r{@) = max{r(B). r(C)}

where P, 0, B, and C are as defined at the start of an iteration of the for loop in Step 2.

From the definition of rank, the inequality holds at the start of the first iteration of
the for loop regardless of the color of P. If P is red inittally, then its parent, , exists and
is black. Let g~ be the parent of (. 1f ¢~ = 0, then there is no at which the inequality is
violated. So, assume ¢~ # (. From the definition of rank and the fact that Q is black, it
follows that r{g") = r(Q) + 1. Let B” and C~ be the trees B and (following the three-
way join of Step 2. Since r{(B) S r(BY+1and r(CHLSH(COY+ L, r{g) =r(H+1 2
max{7(B), r(C}} + 1 = max{r(B7), r(C)}. So, the inequality holds the first time Q
points to a node with a black child P (i.e., at the start of the second iteration of the for
loop, when @ =g").

Having established the induction base, we can proceed to show that the inequality
holds at all subsequent iterations when (points to a node with a black child P. Suppose
O is currently pointing to a node ¢ with a black child P = p. Assume that the inequality
holds. We shall show that it will hold again the next time € is at a node with a black P.
For there to be such a next time, the parent ¢~ of ¢ must exist. If g is black, the proof is
similar to that provided for a black (2 and a red P in the induction base.

If g is red, then ¢ " is black. Further, for there to be a next time when (} is al a node
with a black P. ¢ must have a grandparent ¢ 7, as when @ movesto g and Plog, Q=g"
has a red child P =¢g. Let B and C~ represent the B and C trees following the iteration
that begins with P = p and Q = g. Similarly, let B”" and C”" represent these trees follow-
ing the iteration that begins with P=gand O =¢q".

Suppose that C is joined with ¢ and its right subtree R to create C7. Hr(C)=r(R),
then r(C") = r(C} + 1, and C~ has two black children (recall that when the rank
increases by one, the root has two black children). If C*" = C”, then B = B~ is combined
with ¢~ and its left subtree L’ to form B”. Since r(L)} £ r(g"), r(B) <
max{r(B), riLD}+l,andr{g")=ri(gY+ 1=rig)+ 1, r(B")<r(g™). Also, r(C")=
rHCY=r(C)+ 1 <rig)+ 1 £ri(g”"). So, the inequality holds when 0 =¢"". If C™" #
C’, then C” is combined with ¢~ and its right subtree R" to form C™". If r{iR) 2 r(C"},
then r{CYSr(RV+1Sr(g)+1=r(g™). Ifr(R)<r(C), then r(C7Yy=r{C"), as
C’ has two black children, and the join of C°, ¢°, and R” does not increase the rank.
Once again, r(C"}y< r(g”"), and the inequality holds when O =¢ "

If r(Cy>r{Ryand r(CH=r(C) then rig)=r(g)+ 1 Z2max{r(B), r(C)} + 1>
max{r(B*), r(CH}. If r(CYy=r{C)+ |, then C" has two black children, and r(C ") <
rig)+1=rig”"). Also, r(B”'} <r(g”"). So, the inequality holds when Q = g”". The
case r(C) < r(R)} is similar.

The case when B is joined with g and its left subtree L is symmetric.

Using the rank inequality just established, we can show that whenever ¢ points to
a node with a black child, the total work done in Step 2 of the splitting algorithm from
initiation to the time { reaches this node is O(r(B) + r(C) + r({})). Here, B and C are,
respectively, the current red-black trees with values smaller and larger than the splitting
value. Since r(Q) 2 max{r(B), r{C)}, the total work done in Step 2 is O(r(Q)). From

Red-Black Trees 517

this, it follows that the time required to perform a split is O(log n), where n is the number
of nodes in the tree to be split. O

EXERCISES

1.

Start with an empty red-black tree and insert the following keys in the given order:
15,14,13,12,11,10,9,8.7,6, 5, 4, 3,2, 1. Draw figures similar to Figure 10.18
depicting your tree immediately after each insertion and following the rebalancing
rotation or color change (if any). Label all nodes with their color and identify the
rotation type (if any) that is done.

Do Exercise | using the insert key sequence: 1,2,3,4,5,6,7,8,9,10, 11, 12,13,
14, 15.

Do Exercise 1 using the insert key sequence: 20, 10, 5, 30, 40, 57, 3, 2, 4, 35, 25,
18,22, 21,

Do Exercise | using the insert key sequence: 40, 50, 70, 30, 42, 15, 20, 25, 27, 26,
60, 55.

Draw the RRr and RLr color changes that correspond to the LLr and LRr changes
of Figure 10.16.

Draw the RRb and RLD rotations that correspond to the LLb and LRb changes of
Figure 10.17.

Let T be a red-black tree with rank . Write a function to compute the rank of each
node in the tree. The time complexity of your function should be linear in the
number of nodes in the tree. Show that this is the case.

Compare the worst-case height of a red-black tree with n nodes and that of an
AVL tree with the same number of nodes.

Develop the deletion transformations for a red-black tree. Show that a deletion

from a red-black tree requires at most one rotation.

{a) Use the strategy described in this section to obtain a C function to compute
a three-way join. Assume the existence of a function rebalance (X) that per-
forms the necessary transformations if the tree pointer to node X is the
second of two consecutive red pointers. The complexity of this function
may be assumed to be O(level (X)).

(b) Prove the correctness of your function.
(c) What is the time complexity of your function?

Obtain a function to perform a two-way join on red-black trees. You may assume
the existence of functions to search, insert, delete, and perform a three-way join.
What is the time complexity of your two-way join function?

12, Use the strategy suggested in Program 10.4 to obtain a C function to perform the
split operation in a red-black tree 7. The complexity of your algorithm must be
O(height (T)). Your function must work when the splitting key i is present in T
and when it is not present in T.

13. Complete the complexity proof for the split operation by showing that whenever Q
has a black child, the total work done in Step 2 of the splitting algorithm from ini-
tiation to the time that reaches the current node is O(r (Q)).

14. Program the search, insert, and delete operations for AVL ftrees and red-black
trees.

(a) Test the correctness of your functions.

(b) Generate a random sequence of n inserts of distinct values. Use this
sequence 1o initialize each of the data structures. Nexl, generate a random
sequence of searches, inserts, and deletes. In this sequence, the probability
of a search should be 0.5, that of an insert 0.25, and that of a delete 0.25.
The sequence length is m. Measure the time needed to perform the m opera-
tions in the sequence using each of the above data structures.

(c} Do part (b) for n = 100, 1000, 10,000, and 100,000 and m = n, 2n, and 4n.
(d) What can you say about the relative performance of these data structures?

104 SPLAY TREES

We have studied balanced search trees that allow one to perform operations such as
search, insert, delete, join, and split in O(log n) worst-case time per operation. In the
case of priority queues, we saw that if we are interested in amortized complexity rather
than worst-case complexity, simpler structures can be used. This is also true for search
trees. Using a splay tree, we can perform the operations in O(log n) amortized time per
operation. In this section, we develop two varieties of splay trees-~bottom up and top
down. Although the amortized complexity of each operation is O(log n) for both
varieties, experiments indicate that top-down splay trees are faster than bottom-up sptay
trees by a constant factor,

10.4.1 Bottom-Up Splay Trees

A bottom-up splay tree is a binary search tree in which each search, insert, delete, and
Jjoin operation is performed in the same way as in an ordinary binary search tree (see
Chapter 5) except that each of these operations is followed by a splay. In a split, how-
ever, we first perform a splay. This makes the split very easy to perform. A splay con-
sists of a sequence of rotations. For simplicity, we assume that each of the operations is

Splay Trees 519

always successful. A failure can be modeled as a different successful operation. For
example, an unsuccesful search may be modeled as a search for the element in the last
node encountered in the unsuccessful search, and an unsuccessful insert may be modeled
as a successful search. With this assumption, the start node for a splay is obtained as fol-
lows:

(1) search: The splay starts at the node containing the element being sought.
(2) inserr: The start node for the splay is the newly inserted node.

(3) delete: The parent of the physically deleted node is used as the start node for the
splay. If this node is the root, then no splay is done.

(4) threeWayJoin: No splay is done.

(5) splir: Suppose that we are splitting with respect to the key 7 and that key i is actu-
ally present in the tree. We first perform a splay at the node that contains i and
then split the tree. As we shall see, splitting following a splay is very simple.

Splay rotations are performed along the path from the start node to the root of the
binary search tree. These rotations are similar to those performed for AVL. trees and
red-black trees. Let g be the node at which the splay is being performed. Initially, g is
the node at which the splay starts. The following steps define a splay:

(1) If g is either O or the root, then the splay terminates.

(2) If g has a parent, p, but no grandparent, then the rotation of Figure 10,19 is per-
formed, and the splay terminates,

a, b, and c are subtrees

Figure 10.19: Rotation when g is a right child and has no grandparent

(3) 1f g has a parent, p, and a grandparent, gp, then the rotation is classified as LL (p is
the left child of gp, and g is the ieft child of p), LR (p is the left child of gp, and ¢

is the right child of p), RR, or RL.. The RR and RL rotations are shown in Figure
10.20. LL and LR rotations are symmetric to these. The splay is repeated at the
new location of g.

&P q
i \
P
d
_—
gp
C
\ /
a b
q
b c d

/
a
q
b
c d
(a) Type RR
gD
/ &(‘ o m
a 2\ /\
q \
d
C

A a

b (b) Type RL

Figure 10.20; RR and RL rotations

Notice that all rotations move ¢ up the tree and that following a splay, g becomes
the new root of the search tree. As a result, splitting the tree with respect to a key, i, is
done simply by performing a splay at / and then splitting at the root. Figure 10.21 shows
a binary search tree before, during, and after a splay at the shaded node.

In the case of Fibonacci heaps, we obtained the amortized complexity of an opera-
tion by using an explicit cross-charging scheme. The analysis for splay trees will use a
potential technique. Let P, be the initial potential of the search tree, and let F; be its
potential following the ith operation in a sequence of m operations. The amortized time

Splay Trees 521

(d) After LR rotation

(¢) After LL rotation

Figure 10.21: Rotations in a splay beginning at shaded node (continued on next page)

(e) After RL rotation

Figure 10.21: Rotaticns in a splay beginning at the shaded node

for the ith operation ts defined to be
(actual time for the ith operation} + P; — P;_;

That is, the amortized time is the actual time plus the change in the potential. Rearrang-
ing terms, we see that the actuai time for the ith operation is

{amortized time for the ith operation) + P, | — P,
Hence, the actual time needed to perform the m operaticons in the sequence is

Y (amortized time for the ith operation) + Py — P,

]

Since each operation other than a join involves a splay whose actual complexity is
of the same order as that of the whole operation, and since each join takes O(1) time, it is
sufficient to consider only the time spent performing splays.

Each splay consists of several rotations. We shall assign to each rotation a fixed
cost of one unit. The choice of a potential function is rather arbitrary. The objective is
to use one that results in as smalt a bound on the time complexity as is possible. We now
define the potential function we shall use. Let the size, s(i), of the subtree with root i be
the total number of nodes in it. The rank, r(i), of node i is equal to | logzs (i) }. The
potential of the tree is ¥ r(i). The potential of an empty tree is defined to be zero.

I
Suppose that in the tree of Figure 10.21(a}, the subtrees a, b, - - -, j are all empty,
Then (s{1), ---, s =(9,6,3.2, 1,4, 57,8 rN=r4)=1;r(5)=0; and r(9H = 3.
In Lemma 10.3 we use r and r”, respectively, to denote the rank of a node before and

Splay Trees 523

after a rotation.

Lemma 10.3; Consider a binary search tree that has n elements/nodes. The amortized
cost of a splay operation that begins at node g is at most 3(| logyn | —r(g)) + L.

Proof: Consider the three steps in the definition of a splay:

(1) In this case, g either is O or the root. This step does not alter the potential of the
tree, so its amortized and actual costs are the same. This cost is 1.

(2) In this step, the rotation of Figure 10.19 (or the symmetric rotation for the case
when g is the left child of p) is performed. Since only the ranks of p and g are
affected, the potential change, AP, is r'{p) + r(q)— r(p) — r{(g). Further, since
r’(p) <r(p), AP < r’(g)—r(g). The amortized cost of this siep (actual cost plus
potential change) is, therefore, no more than r'(g) —r(g) + L.

(3) In this step only the ranks of g, p, and gp change. So, AP = r(g) + r’(p) + r’(gp)
- r(g)—r(p)—rigp). Since, r(gp) =r’ig),

AP=r'(p)+ri(gp)—r(g)—rp) - (1)

Consider an RR rotation. From Figure 10.20(a), we see that r’(p) £ r'(g),
r(gp)y<ri(g) and r(g) < r(p). So, AP <2(r'(g)-rig). Ifr'(g)>r(g), AP <
3(ri(g)-rig))— 1. f r'(g) = r(g), then r'{g) = r(g) = r(p) = r(gp). Also,s(g)
> s(g) + s'(gp). Consequently, r'(gp) < r'(g). To see this, note that if r'(gp) =
r’(g), then s°(g) > 2D + 27" = 27@+! \which violates the definition of rank.
Hence, from (1), AP < 2(r"(g) — r{g))— 1 = 3(r"(g) - r(g)) — 1. So, the amortized
cost of an RR rotation is at most 1+3(r (g) — rig) — 1 =3{r"(g) — rig).

This bound may be obtained for LL, LR, and RL rotations in a similar way.

The lemma now follows by observing that Sieps 1 and 2 are mutually exclusive
and can occur at most once. Step 3 occurs zero or more times. Summing up over the
amortized cost of a single occurrence of Steps 1 or 2 and atl occurrences of Step 3, we
obtain the bound of the lemma. U

Theorem 10.1: The total time needed for a sequence of m search, insert, delete, join,
and split operations performed on a collection of initially empty splay trees is
O(m log n), where n, n > 0, is the number of inserts in the sequence.

Proof: Since none of the splay trees has more than # nodes, no node has rank more than
| logyn |. A search (excluding the splay) does not change the rank of any node and
hence does not affect the potential of the splay tree involved. An insert (excluding the
splay) increases, by one, the size of every node on the path from the root to the newly
inserted node. This causes the ranks of the nodes with size 2f — 1 to change. There are
at most | logyn | + 1 such nodes on any insert path. So, each insert (excluding the splay)
increases the notential bv at most this much. Each ioin increases the total potential of all

the splay trees by at most | logyn |. Deletions do not increase the potential of the
involved splay tree except for any increase that results from the splay step. The split
operation (excluding the splay step) reduces the overall potential by an amount equal to
the rank of the tree just before the split (but after the splay that precedes it). So, the
potential increase, P/, attributable to the m operations (exclusive of that attributable to
the splay steps of the operations) is O(m log n).

From our definition of the amortized cost of a splay operation, it follows that the
time for the sequence of operations is the sum of the amortized costs of the splays, the
potential change Py —P,,, and PI. From Lemma 10.3, it follows that the sum of the
amortized costs is O(m log n). The initial potential, #,, is 0, and the final potential, P,,,
is 20. So, the total time is O(m log n). [

104.2 Top-Down Splay Trees

As in the case of a bottom-up splay tree, a threeWayJoin is implemented the same in a
top-down splay tree as in Section 5.7.5. For the remaining operations, let the splay node
be as defined for a bottom-up splay tree. For each operation, we follow a path from the
root to the splay node as in Section 5.7.5. However, as we follow this path, we partition
the binary search tree into three components—a binary search tree small of elements
whose key is less than that of the element in the splay node, a binary search tree big of
elements whose key is greater than that of the element in the splay node, and the splay
node. Notice that in this downward traversal of the path from the root to the splay node,
we do not actually know which node is the splay node until we get to it. So, the down-
ward traversal is done using the key & associated with the operation that is being per-
formed.

For the partitioning, we begin with two empty binary search trees small and big. It
is convenient to give these trees a header node that is deleted at the end. Let s and b,
respectively, be initialized to the header nodes of small and big. The downward traver-
sal to the splay node begins at the root, Let x denote the node we currently are at. We
begin with x being the tree root. There are 7 cases to consider:

Case 0: x is the splay node.
Terminate the partitioning process.

Case L: The splay node is the left child of x,
In this case, x and its right subtree contain keys that are greater than that in the
splay node. So, we make x the left child of b (b —IeftChild = x) and set b = x
and x = x —leftChild. Notice that this automatically places the right subtree of
x into big. Figure 10.22 shows a schematic for this case.

Case R: The splay node is the right child of x.
This case is symmetric to Case L. Now, x and its left subtree contain keys that

Splay Trees 525

x
B
(4) b
b
h T
(B) (£) b
N
BL BR ER
{a) Before L transformation
X
Ty
B By 52
b
—
A Eg
KAR

(b) After L transformation

Figure 10.22: Case L for a top-down splay tree

are less than that in the splay node. So, we make x the right child of s
(s —rightChild = x) and set s =x and x = x-»>rightChild. Notice that this
automatically places the left subtree of x into small.

Case LR:The splay node is in the right subtree of the left child of x.
This case is handled as Case L followed by Case R.

Case RL:The splay node is in the left subtree of the right child of x.
This case is handled as Case R followed by Case L.

Case LL: The splay node is in the left subtree of the left child of x.
This case is not handled as two applications of Case L. Instead we perform an
LL rotation around x. Figure 10.23 shows a schematic for this case. The
shown transformation is accomplished by the following code fragment:

{(a) Before LL transformation

(b} After LL transformation

Figure 10.23: Case LL for a top-down splay tree

b->leftChild = x-»>leftChild;
b = b-—>leftChild;
x~>leftChild = b->rightChild;
b->rightChiid = x;

X = b-rleftChild;

Splay Trees 527

Case RR:The splay node is in the right subtree of the right child of x.
This case is symmetric to Case LL..

The above transformations are applied repeatedly until terminated by an applica-
tion of Case 0. Upon termination, x is the splay node. Now, the left subtree of x is made
the right subtree of s and the right subtree of x is made the left subiree of b. Finally, the
header nodes of the small and big trees are deleted.

In case we were performing a split operation and x contains the split key, we
return small, x —data, and big as the result of the split. For a search, insert and delete,
we make small and big, respectively, the left and right subtrees of x and the tree rooted at
x is the new binary search tree (we assume that in the downward quest for the splay
node, the remaining tasks associated with the search, insert and delete operations have
been done).

Example 10.5: Suppose we are searching for the key 5 in the top-down splay tree of
Figure 10.21{a). Although we don’t know this at this time, the splay node is the shaded
node. The path from the root to the splay node is determined by comparing the search
key 5 with the key in the current node. We start with the carrent node pointer x at the
root and two empty splay trees—small and big. These empty splay trees have a header
node. The variables s and b, respectively, point to these header nodes. Since the splay
node is in the left subtree of the right child of x, an RL transformation is called for. The
search tree as well as the trees small and big following the RL transformation are shown
in Figure 10.24(a).

Now, since the splay node is in the right subtree of the Ieft child of the new x, an
LR transformation is made and we obtain the configuration of Figure 10.24(b). Next, we
make an LL transformation (Figure 10.24(c)) and an RR transformation (Figure
10.24(d)). Now, x is at the splay node. The left subtree of x is made the right subtree of s
and the right subtree of x is made the left subtree of b (Figure 10.24(e)). Finally, we
delete the header nodes and make the small and big trees subtrees of x as shown in Fig-
ure 10.24(f). O

EXERCISES

1. Obtain figures corresponding to Figures 10.19 and 10.20 for the symmetric
bottom-up splay tree rotations.

2. What is the maximum height of a bottom-up splay tree that is created as the result
of n insertions made into an initially empty splay tree? Give an example of a
sequence of mserts that results in a splay tree of this height.

3. Complete the proof of Lemma 0.3 by providing the proof for the case of an RL
rotation. Note that the proofs for LL and LR rotations are similar to those for RR
and RL rotations, respectively, as the rotations are symmetric.

(a) After RL transformation
x L’Tm;ll big
—)
JO! NG 0
- .

PO ol
(3 g / .

(b) After LR transformation

Figure 10.24: Example for top-down splay tree (continued on next page)

4. Explain how a two-way join should be performed in a bottom-up splay tree so that
the amortized cost of each splay tree operation remains O(log n).

5. Explain how a split with respect to key / is to be performed when key / is not
present in the bottom-up splay tree. The amortized cost of each bottom-up splay
tree operation should be O(log »).

Splay Trees 529

(d)y After RR transformation

T [small big
©) ?’2
2 (2 . j

é g e

b

(3

/ LX\)

¢ d

(e After moving subtrees of splay node

Figure 19.24: Example for top-down splay tree {continued on next page)

6 i

. Oy
D

d 4

() Final search tree

Figure 10.24: Example for top-down splay tree

6. Implement the bottom-up splay tree data structure. Test all functions using your
own test data.

7. |Sleator and Tarjan] Suppose we modify the definition of s{i) used in connection
with the complexity analysis of bottom-up splay trees. Let each node i have a
positive weight p (i). Let s (/) be the sum of the weights of all nodes in the subtree
with root i. The rank of this subtree is log,s (i).

(a} Letsbe the root of a splay tree. Show that the amortized cost of a splay that
begins at node ¢ 1s at most 3(r {(t) — r(g)) + 1, where r is the rank just before
the splay.

(b) Let S be a sequence of n inserts and m searches. Assume that each of the n
inserts adds a new element to the splay tree and that all searches are sue-
cessful. Let p(i}, p(i) > 0, be the number of times element / is sought. The
p (i)’s satisfy the following equality:

n
Ypl)=m
i=1
Show that the total time spent on the m searches is

O(m + ¥ p(i)log (m/p (i)

i=1

bed

Note that since Q(m + Y p(i)log(m/p(i)) is an information theoretic
i=1

bound on the search time in a static search tree (the optimal binary search

References and Selected Readings 531

tree of Section 10.1 is an example of such a tree), bottom-up splay trees are
optimal to within a constant factor for the representation of a static set of
elements.

8. Obtain figures corresponding to Figures 10.22 and 10.23 for the top-down splay
tree transformations R, RR, RL, and LR.

9. What is the maximum height of a top-down splay tree that is created as the result
of n insertions made into an initially empty splay tree? Give an example of a
sequence of inserts that results in a splay tree of this height.

10. Implement the top-down splay tree data structure. Test all functions using your
own test data.

10.5 REFERENCES AND SELECTED READINGS

The O(n?) optimum binary search tree algorithm is from ‘‘Optimum binary search
trees,”” by D. Knuth, Acra Informatica, 1:1, 1971, pp. 14-25. For a discussion of heuris-
tics that obtain in O(n log n) time nearly optimal binary search trees, see ‘‘Nearly
optimal binary search trees,”” by K. Mehlhorn, Acta Informatica, 5, 1975, pp. 287-295;
and ‘‘Binary search trees and file organization,”” by J. Nievergelt, ACM Computing Sur-
veys, 6:3, 1974, pp. 195-207.

The original paper on AVL trees by G. M. Adelson-Velskii and E. M. Landis
appears in Dokl. Acad. Nauk., SSR (Soviet Math), 3, 1962, pp. 1259-1263. Additional
algorithms to manipulate AVL trees may be found in “‘Linear lists and priority queues as
balanced binary trees,”” by C. Crane, Technical Report STAN-CS-72-259, Computer
Science Dept., Stanford University, Palo Alto, CA, 1972, and The Art of Computer Pro-
gramming: Sorting and Searching by D. Knuth, Addison-Wesley, Reading, MA, 1973
(Section 6.2.3).

Results of an empirical study of height-balanced trees appear in ‘‘Performance of
height-balanced trees,”” by P. L. Karlton, S. H. Fuller, R. E. Scroggs, and E. B. Koehler,
CACM, 19:1, 1976, pp. 23-28.

Splay trees were invented by D. Sleator and R. Tarjan. Their paper °‘Self-
adjusting binary search trees,”” JACM, 32:3, 1985, pp. 652-686, provides several other
analyses of splay trees, as well as variants of the basic splaying technique discussed in
the text. Our analysis is modeled after that in Data Structures and Network Algorithms,
by R. Tarjan, SIAM Publications, Philadelphia, PA, 1983.

For more on binary search trees, see Chapters 10 through 14 of ‘‘Handbook of data
structures and applications,”” edited by D. Mehta and S. Sahni, Chapman & Hall/CRC,
Boca Raton, 2005.

CHAPTER 11

Multiway Search Trees

11.1 m-WAY SEARCH TREES

11.1.1 Definition and Properties

Balanced binary search trees such as AVL and red-black trees allow us to search, insert,
and delete in O(log n) time, where n is the number of elements. While this may seem to
be a remarkable accomplishment, we can improve the performance of search structures
by capitalizing on the exhorbitant time it takes to make a memory access (whether to
main memory or to disk) relative to the time it takes to perform an arithmetic or logic
operation in a modern computer. An access to main memory typically takes approxi-
mately 100 times the time to do an arithmetic operation while an access to disk takes
about 10,000 times the time for an arithmetic operation. Because of this significant
mismatch between processor speed and memory access time, data is typically moved
from main memory to cache (fast memory) in units of a cache-line size (of the order of
160 bytes) and from disk to main memory in units of a block (several kilo bytes). For
uniformity with disks, we say that main memory is organized into blocks; the size of
each block being equal to that of a cache line. AVL and red-black trees are unable to

532

m-Way Search Trees 533

take advantage of this large unit (i.e., block) in which data is moved from slow memory
(main or disk) to faster memory {cache or main) since the node size is typically only a
few bytes. Consider an AVL tree with 1,000,000 elements. It’s height may be as much as
| 1.44log,(n+2)], which is 28, To search this tree for an element with a specified key, we
must access those nodes that are on the search path from the root to the node thal con-
tains the desired element. This path may contain 28 nodes and if each of these 28 nodes
lies in a different memory block, a total of 28 memory accesses and 28 compares are
made in the worst case. Most of the search time is spent on memory access! To improve
performance, we must reduce the number of memory accesses. Notice that if halving the
number of memory accesses resulted in a doubling of the number of comparisons, we
would still achieve a reduction in total search time. Since the number of memory
accesses is closely lied to the height of the search tree, we must reduce tree height. To
break the log,(n +1) barrier on tree height resulting from the use of binary search trees,
we must use search trees whose degree is more than 2. In practice, we use the largest
degree for which the tree node fits into a block (whether cache line or disk block).

Definition: An m-way search tree is either empty or satisfies the following properties:

{1) The root has at most m subtrees and has the following structure:
n, A(}, (ElaA 1)a (EZaAZ)v T (ElnAn)

where the A;, 0 €i <nr < m, are pointers 1o subtress, and the E;, 1 £§<n <m, are
elements. Each element E; has a key E. K.

(2) E,K < Ej+|.K, 1<i<n.

(3) LetEyK=-occand E,,.K= . All keys in the subiree A; are less than E, ;. K and
greater than E, K, 0<i<n.

(4) The subtrees A;, 0 < i < n, are also m-way search trees. O

We may verify that binary search trees are two-way search trees. A three-way
search tree is shown in Figure 11.1. For convenience, only keys are shown in this figure
as well as in all remaining figures in this chapter.

Tn a tree of degree m and height A, the maximum number of nodes is

Y om =(m" — Am - 1)
o<i<h|

Since each node has at most m — | elements, the maximum number of elements in an m-
way tree of height k is m" — |. For a binary tree with £ = 3 this quantity is 7. For a
200-way tree with & = 3 we have m" — | = 8% 10° - 1.

To achieve a performance close to that of the best m-way search trees for a given
number of elements #, the search tree must be balanced. The particular varieties of bal-
anced m-way search trees we shall consider here are known as B-trees and B*-trees.

T ={ 20, 4(9 node | schematic format
. B\C — 4 a_ | 2,b,(20,c). (40, d)
o St Zm b | 2,0,00,0,05,0
DGO B CE ORI s
:l d 2,0, (45,0, (50,0
€.l e 1,0, (28, 0}

Figure 11.1: Example of a three-way search tree

11.1.2 Searching an m-Way Search Tree

Suppose we wish to search an m-way search tree for an element whose key is x. We
begin at the root of the tree. Assume that this node has the structure given in the
definition of an m-way search tree. For convenience, assume that EgK=—and E, ;.K
= +eo. By searching the keys of the root, we determine i such that E,.K < x < E.LK If
x = E. K, then the search is complete. If x # E,.K, then from the definition of an m-way
search tree, it follows that if x is in the tree, it must be in subtree A;. So, we move to the
root of this subtree and proceed to search it. This process continues until either we find x
or we have determined that x is not in the tree (the search leads us to an empty subtree).
When the number of elements in the node being searched is small, a sequential search is
used. When this number is large, a binary search may be used. A high-level description
of the algorithm to search an m-way search tree is given in Program 11.1.

EXERCISES

1. Draw a sample 5-way search tree.

2. What is the minimum number of elements in an m-way search tree whose height is
h?

3. Write an algorithin to insert an element whose key is x into an m-way search tree.
What is the complexity of your algorithm?

4. Write an algorithm to delete the element whose key is x from an m-way search
tree. What is the complexity of your algorithm?

B-Trees 535

/* search an m-way search tree for an element with key x,

return pointer to the element it found, retarn NULL otherwise %/
Ey.K=-MAXKEY;
for (+p = root; ps p = A;)

{
Let p have the format n, Ay, (E, A - (B, ALY,
E, 1. K=MAXKEY;
Determine i such that F.K <x < E,,|.K;
if { x == E;.K} return E;;
}

/* x is not in the trec */
return NULL;

Program 11.1: Searching an m-way search tree

11.2 B-TREES

11.2.1 Definition and Properties

The implementation of a database management system often relies upon either B-trees or
B*-trees (Section 11.3) to facilitate quick insertion into, deletion from, and searching of
a database. A knowledge of these structures is crucial to understanding how commercial
database management systems function. In defining a B-tree. it is convenient to extend
m-way search trees by the addition of external nodes. An external {or failure) node is
added wherever we otherwise have a NULL pointer. An external node represents a node
that can be reached during a search only if the element being sought is not in the tree.
Nodes that are not external nodes are called internal nodes.

Definition: A B-tree of order m is an m-way search tree that either is empty or satisfies
the following properties:

(1Y The root node has at least two children,

(2) All nodes other than the root node and external nodes have at least [m /2] chil-
dren,

{3) All external nodes are at the same level. O

Observe that when m = 3, all internal nodes of a B-tree have a degree that is either
2 or 3 and when m = 4, the permissible degrees for these nodes are 2, 3 and 4. For this
reason, a B-tree of order 3 is known as a 2-3 tree and a B-tree of order 4 is known as a

2-3-4 tree. A B-tree of order 5 is not a 2-3-4-5 tree as a B-tree of order 5 cannot have
nodes whose degree is 2 (except for the root). Also, notice that all B-trees of order 2 are
full binary trees. Hence, B-trees of order 2 exist only when the number of key values is
2% _ 1 for some k. However, for any n >0 and any m > 2, there is always a B-tree of
order m that contains n keys.

Figure 11.2 shows a 2-3 tree (ie., a B-tree of order 3) and Figure 11.3 shows a
2-3-4 tree (i.e., a B-tree of order 4). Notice that each (internal) node of a 2-3 tree can
hold 2 elements while each such node of a 2-3-4 tree can hold 3 elements, In the figures,
only the keys are shown. Note also that although Figures 11.2 and 11.3 show external
nodes, external nodes are introduced only to make it easier to define and talk about B-
trees. External nodes are not physically represented inside a computer. Rather, the
corresponding child pointer of the parent of each external node is set to NULL.

A
40

Figure 11.2: Example of a 2-3 tree

11.2.2 Number of Elements in a B-Tree

A B-tree of order m in which all external nodes are at level /+1 has at most m’ — 1 keys.
What is the minumum number, ¥, of elements in such a B-tree? From the definition of a
B-tree we know that if > 1, the root node has at least two children. Hence, there are at
least two nodes at level 2. Each of these nodes must have at least [m/2} children.
Thus, there are at least 2[m /2] nodes at level 3. At level 4 there must be at least
2[m/2]? nodes, and continuing this argument, we see that there are at least 2{m /2]
nodes at level { when { > 1. All of these nodes are internal nodes. If the keys in the tree
are K, K2, -+, Ky and K; < K;,|. 1 £i <N, then the number of external nodes is
N + 1. This is so because failures occur for K; < x < K, (. 0<i <N, where K; = —oo and
Ky, = +oo. This results in N + 1 different nodes that one could reach while searching

B-Trees 537

50 ‘

10 ‘ 70 | 80

\

30 |40 560} |75 | 185]90[92

ésﬂﬁjgégﬂrj éél é\j I&DD&

Figure 11.3; Example of a 2-3-4 tree

7

for a key x that is not in the B-tree. Therefore, we have

number of external nodes
number of nodes at level (/ + 1)
2[m/2] =1

N+

A"

soN22{m/2]7' - 1,121.

This in turn implies that if there are N elements (equivalently, keys) in a B-tree of
order m, then all internal nodes are at levels less than or equal to |,
! <10g[mm (N + 1)/2} + 1. If a B-tree node can be examined with a single memory
access, the maximum number of accesses that have to be made for a search is /. Using a
B-tree of order m = 200, which is quite practical for a disk resident B-tree, a tree with
N <2x10° -2 will have [<log,oo{(N + 1)/2} + 1. Since [is an integer, we obtain
I<3. ForN<2x 10 -2 wegetl <4,

To search a B-tree with a number of memory accesses equal to the B-tree height
we must be able to examine a B-tree node with a single memory access. This means that
the size of a node should not exceed the size of a memory block (i.e., size of a cache line
or disk block). For main-memory resident B-trees an m in the tens is practical and for
disk resident B-trees an m in the hundreds is practical.

11.2.3 [Insertion into a B-Tree

The insertion algorithm for B-trees first performs a search to determine the leaf nede, p,
into which the new key is to be inserted. If the insertion of the new key into p results in
p having m keys, the node p is split. Otherwise, the new p is written to the disk, and the
insertion is complete. To split the node, assume that following the insertion of the new
element, p has the format

ITl.A(}, (E[,A]). "'.{Em,Am), and E<E, . 15i<m

The node is split into two nodes, p and g, with the following formats:
nodep: [Iﬂ /2] -1, A()‘ (E]A 1), ety (El'm/ﬂ_l,A rm,fz'l,]) (] 1.5)
node g:m — [m /2], Ay AE [m/2)+ 1A [m) o1) s (EpaAg)

The remaining element, £ [m/2] > and a pointer to the new node, g, form a tuple
(Efms21+4) This is to be inserted into the parent of p.

[nserting into the parent may require us to split the parent, and this splitting pro-
cess can propagate all the way up to the root. When the root splits, a new root with a sin-
gle element is created, and the height of the B-tree increases by one. A high-level
description of the insertion algorithm for a disk resident B-tree is given in Program 11.2.

Example 11.1: Consider inserting an element with key 70 into the 2-3 tree of Figure
11.2. First we search for this key. If the key is already in the tree, then the existing ele-
ment with this key is replaced by the new element. Since 70 is not in our example 2-3
tree, the new element is inserted and the total number of elements in the tree increases by
1. For the insertion, we need to know the leaf node encountered during the search for 70.
Note that whenever we search for a key that is not in the 2-3 tree, the search encounters a
unique leaf node. The leaf node encountered during the search for 70 is the node C, with
key 80. Since this node has only one element, the new element may be inserted here.
The resulting 2-3 tree is shown in Figure 11.4(a).

Next, consider inserting an element with key 30. This time the search encounters
the leaf node B, Since B is full, it is necessary to split B. For this, we first symbolically
insert the new element into B to get the key sequence 10, 20, 30. Then the overfull node
is split using Eq. 11.5. Following the split, B has the key sequence 10 and the new node,
D, has 30. The middle element. whose key is 20, together with a pointer to the new node
D is inserted into the parent A of B. The resulting 2-3 tree is shown in Figure 11.4(b).

Finally, consider the insertion of an element with key 60 into the 2-3 tree of Figure
11.4(b). The leafl node encountered during the search for 60 is node C. Since C is full, a
new node, E, is created. Node E contains the element with the largest key (80). Node C
contains the element with the smallest key (60). The clement with the median key (709,
together with a pointer to the new node, E, is to be inserted into the parent A of C.
Again, since A is full, a new node, F, containing the element with the largest key among

B-Trees 539

/* insert element x inio a disk resident B-tree */
Search the B-tree for an element E with key x.X.
if such an £ is found, replace E with x and return;
Otherwise, let p be the leaf into which x is to be inserted:
¢=NULL;
for (e = x; p1 p = p—parent ()
{/* (e, g} is to be inserted into p */
Ensert (e, ¢) into appropriate position in node p;
Let the resulting node have the form: n, Ay, (£}, A)), -, (E,. A,);
if (n <=m — 1) { /* resulting node is not too big */
write node p o disk; return;
t
/* node p has to be split */
Let p and g be defined as in Eq. (11.5);
e=Ep;
write nodes p and ¢ to the disk;
}
/* a new root is to be created */
Create a new node » with format 1, root, (e, q);
root = r,
write root 1o disk;

Program 11.2: lnsertion into a B-tree

{20, 40, 70} is created. As before, A contains the element with the smallest key. B and
I remain the left and middle children of A, respectively, and C and E become these chil-
dren of F. If A had a parent, then the element with the median key 40 and a pointer to
the new node, F, would be inserted into this parent node. Since A does not have a parent,
we create a new root, G, for the 2-3 tree. Node G contains the element with key 40,
together with child pointers to A and F. The new 2-3 tree is as shown in Figure 11.5. O

Analysis of B-tree Insertion: For convenience, assume the B-tree is disk resident. If A
is the height of the B-tree, then 4 disk accesses are made during the top-down search. In
the worst case, all £ of the accessed nodes may split during the bottom-up splitting pass.
When a node other than the root splits, we need to write out two nodes. When the root
splits, three nodes are written out. If we assume that the 4 nodes read in during the top-
down pass can be saved in memory so that they are not to be retrieved from disk during
the bottom-up pass, then the number of disk accesses for an insertion is at most & (down-
ward pass) + 2(it — 1) (nonroot splits) + 3 (root split) = 34 + 1.

The averace numher af diclk arcaccac ic hmpevar annravimatalo b 1 1 far laeena

40 20 | 40
B C B D C
10 20 70 | 80 10 | 30 70 | 80

|
|
é [E é [E é] L)]
(a) 70 inserted (b) 30 inserted

Figure 11.4: Insertion into the 2-3 tree of Figure 11.2

G

40
/

A o F

20 5 70
B D C E
10 30 60 80
NN [é L1 é []]

Figure 11.5: Insertion of 60 into the 2-3 tree of Figure 11.4(b)

m. To see this, suppose we start with an empty B-tree and insert N values inte it. The
total number of nodes split is at most p — 2, where p is the number of internal nodes in
the final B-tree with N entries. This upper bound of p — 2 follows from the observation
that each time a node splits, at least one additional node is created, When the root splits,
two additional nodes are created. The first node created results from no splitting, and if a
B-tree has more than one node, then the root must have split at least once. Figure 11.6

B-Trees 541

shows that p — 2 is the tightest upper bound on the number of nodes split in the creation
of a p-node B-tree when p > 2 (note that there is no B-tree with p =2). A B-tree of
order m with p nodes has at teast 1 + ({m /2] — 1)(p — 1) keys, as the root has at least
one key and remaining nodes have at least [m/2] — 1 keys each. The average number
of splits, s,,,, may now be determined as follows:

ﬂ}%] u ﬁ ™

(@p=1,5=0 b)p=3,5=1

(C)p=4,5=2

Figure 11.6: B-trees of order 3

Savg = (total number of splits)/ N
<(p - 2041 + (Jm2]-1)p - 1)
<1A[m72] - 1)

For m = 200 this means that the average number of node splits is less than 1499 per key
inserted. The number of disk accesses in an insertion is k + 25 — 1, where s is the
number of nodes that are split during the insertion. So, the average number of disk
accesses is o1 + 255, + 1<h + 10189=h + 1. O

11.2.4 Deletion from a B-Tree

For convenience, assume we are deleting from a B-tree that resides on disk. Suppose we
are to delete the clement whose key is x. First, we search for this key. If x is not found,
no element is to be deleted. If & is found in a node, z, that is not a leaf, then the position
occupied by the corresponding element in 7 is filled by an element from a leaf node of
the B-tree. Suppose that x is the ith key in z (i.e., x = E.K). Then E, may be replaced by
either the element with smallest key in the subtree A; or the element with largest key in
the subtree A; ;. Both of these elements are in leaf nodes. In this way the deletion from
a nonleaf node is transformed into a deletion from a leaf. For example, if we are to
delete the element with key 20 that is in the root of Figure 11.6 (¢), then this element
may be replaced by either the element with key 10 or the clement with key 25. Both are
in leaf nodes. Once the replacement is done, we are faced with the problem of deleting
either the 10 or the 25 from a leaf.

There are four possible cases when deleting from a leaf node p. In the first, pis
also the root. If the root is left with at least one element, the changed root is written to
disk and we are done. Otherwise, the B-tree is empty following the deletion. In the
remaining cases, p is not the root. In the second case, following the deletion, P has at
least [m/27] — I elements. The modified leaf is written to disk, and we are done.

In the third case (rotation), p has [m /2] - 2 elements, and its nearest sibling, g,
has at least [m /2] elements. To determine this, we examine only one of the two (at
most) nearest siblings that p may have. p is deficient. as it has one less than the
minimum number of elements required. g has more elements than the minimum
required. A rotation is performed. In this rotation, the number of elements in g
decreases by one, and the number in p increases by one. As a result, neither pnor g is
deficient following the rotation. The rotation leaves behind a valid B-tree. Let r be the
parent of p and ¢. 1If ¢ is the nearest right sibling of p, then let i be such that £; is the ith
element in 7, all elements in p have a key that is less than F,.K, and all those in g have a
key that is greater than E;.K. For the rotation, E; becomes the rightmost element in p.E;
is replaced, in r, by the first (i.e., smallest) element in ¢, and the leftmost subtree of g
becomes the rightmost subtree of p. The changed nodes p, ¢, and r are written to disk,
and the deletion is complete. The case when ¢ is the nearest left sibling of p is similar.

Figure 11.7 shows the rotation cases for 1 2-3 tree. A “*?"" denotes a situation in
which the presence or absence of an element is irrelevant. a, b, ¢, and d denote the chil-
dren (i.c., roots of subtrees) of nodes,

In the fourth case (combine) for deletion, p has [m/2] -2 elements, and its
nearest sibling g has [m /2] -1 elements. So, p is deficient, and ¢ has the minimum
number of elements required by a nonroot node. Now, nodes p and g and the in-between
element £; in the parent r are combined to form a single node. The combined node has
([m/2] =2)+ (Jm/2] - 1)+ 1 =2[m /2] — 2 <m — | elements, which will, at most, ill
the node. The combined node is written to disk. The combining operation reduces the
number of elements in the parent node, r, by one. If the parent does not become deficient

B-Trees 543

v

o

/”/
= P 4// 4 -
sl [
/ | !)
/ | /‘ ’ ‘
a b c d

(a} p is the left child of r

a__ " N q %‘ p]
o [OEENDE
[L / /

a

b ¢ d a b ¢ d

{(b) p is the middle child of r
a

,
w
p —_———— = S
X1y { J :F X | Z J
je—— /‘——-—u—d /
/‘f \\ // / ’I
b c d e b c d e
(c) p is the right child of »

>

Figure 11.7: The three cases for rotation in a 2-3 tree

(i.e., it has at least one element if it is the root and at least [m /2] — 1 elements if it is
not the root), the changed parent is written to disk, and we are done. Otherwise, if the
deficient parent is the root, it is discarded, as it has no elements. If the deficient parent is
not the root, it has exactly [m/2] — 2 elements. To remove this deficiency, we first

attempt a rotation with one of r's nearest siblings. If this is not possible, a combine is
done. This process of combining can continue up the B-tree only until the children of

the root are combined.
Figure 1.8 shows the two cases for a combine in a 2-3 tree when p is the left child

of r. We leave it as an exercise to obtain the figures for the cases when p is a middle

child and when p is a right child.

F s r
X ! [
P
P q _
i ST
I
_—'__.___J
/ [[\
a B C 4 ¢
(a)
r r
|
X Zi z
R
P ¢ |4 P d
y | o ol IR
jf’ ! /
a b ¢ a b C
(b)

Figure 11.8: Combining in a 2-3 tree when p is the left child of r
A high-level description of the deletion algorithm is provided in Program 11.3.

Example 11.2: Let us begin with the 2-3 tree of Figure 11.9(a). Suppose that the two
element fields in a node of a 2-3 tree are called datel. and dataR. To delete the element
with key 70, we must merely delete this element from node C. The result is shown in
Figure 11.9(b). To delete the element with key 10 from the 2-3 tree of Figure 11.9(b}, we
need to shift dataR to datal in node B. This results in the 2-3 tree of Figure 11.9(c).
Next consider the deletion of the element with key 60. This leaves node C
deficient. Since the right sibling, D, of C has 3 elements, we are in case 3 and a rotation

B-Trees 545

/* delete 2lement with key x */
Search the B-tree for the node p that contains the element whose key is x;
if there is no such p return; /* no element to delete */
Let p be of the formn, Ag, (E,.A4,), -, (E,,A) and E.K = x;
if p is not a leaf {
Replace E; with the element with the smallest key in subiree A;;
Let p be the leaf of A; from which this smallest element was taken;
Let p be of the form n, Ag, (E,A), -, (E,.AL)
i=1;
}
/* delete E; from node p, a leaf */
Delete (E;, A;) from p; n——;
while ((n < [m/2] - 1) && p = root)
if p has a nearest right sibling g {
Let g:n,, A, (ET. A7). -+, (E4,. AL %
Letr:n,, Ab, (E7, A7), ++ -, (E} , A,) be the parent of p and ¢;
Let A} =gand A} | =p;
if (n, > = [m/2]) {/* rotation */
(Eyo1s Ape1) =(ES Ad); n = n + 13 /* update node p */
E} = E{; /* update node r */
(ng, AS. (E1, AD), ---) = (n,~1, A1, (E4, AY), -~ ;
/* update node g */
write nodes p, g and r to disk; return;
} /* end of rotation */
/* combine p, E7, and g */
s=2%mR2]-2;
write s, Ag, (E1, A1), . (B, Ay), (E], A, (EF, AT), - (B, AL)
to disk as node p;
/* update for next iteration */
(n, AD e) = (nr_]v Aas T (E;—I!A}—l)! (E;+]1 A;+l) o)
p=r
} 7* end of if p has a nearest right sibling */
else {/* node p must have a left sibling */
/* this is symmetric to the case where p has a right sibling,
and is left as an exercise */
} 7* end of if-else and while */
if (7) write p: (n, Ag, -, (E,AL))
else root = Ay /* new root */

Program 11.3: Deletion from a B-tree that resides on disk

50|80

s
s
s
e

B - C ~ D
11020 60 | 70 J90 95
);%4\ —_4\ 7

! 4 / |

[
oo 0o dh

{(a) Initial 2-3 tree

D
|
/ | I ‘ / \
SO0 oOnD O00n
(b) 70 deleted
A

o

c |
i l6o| | |90 95

Jz‘iql lp' %
/ i ,rj
OO0 D 1 O

(c) 10 deleted

B -

Figure 11.9: Deletion from a 2-3 tree (continued on next page)

B-Trees 547

B
i [P Lzo B 80 | 90
i /] i : /
l 1 hL _’ 1"_, ' ff / 4
ST s N Adh A s
(d) 60 deleted (e} 95 deleted
A B

A
/jo J | 50 80\
!

B ¢ UsR=
} ’2?7] |80 (g) 20 deleted
/ /
1 [N

(f) 90 deleted

Figure 11.9: Deletion from a 2-3 tree

is performed. In this rotation, we move the the in-between element (i.c., the element
whose key is 80) of the parent A of C and D to the daraL position of C and move the
smallest element of D (i.e., the element whose key is 20) into the in-between position of
the parent A of C and D (i.e., the daraR position of A). The resulting 2-3 tree takes the
form shown in Figure 11.9(d). When the element with key 95 is deleted, node D
becomes deficient. The rotation performed when the 60 was deleted is not possible now,
as the left sibling, C, has the minimum number of elements required by a node in a B-
tree of order 3. We now are in case 4 and must combine nodes C and D and the in-
between element (90) in the parent A of C and D. For this, we move the 90 into the left
sibling, C, and delete node D. Notice that in a combine, one node is deleted, whereas in
a rotation, no node is deleted. The deletion of 95 results in the 2-3 tree of Figore 11.9(e).
Deleting the element with key 90 from this tree results in the 2-3 tree of Figure 11.9(f).
Now consider deleting the element with key 20 from this tree. Node B becomes

deficient. At this time, we examine B’s right sibling, C. If C has excess elements, we
can perform a rotation similar to that done during the deletion of 60. Otherwise, a com-
bine is performed. Since C doesn’t have excess elements, we proceed in a manner simi-
lar to the deletion of 95 and do a combine. This time the elements with keys 50 and 80
are moved into B, and node C is deleted. This, however, causes the parent node A to
become deficient. If the parent had not been a root, we would examine its left or right
sibling, as we did when nodes C (deletion of 60) and D (deletion of 95) became empty.
Since A is the root, it is simply deleted, and B becomes the new root (Figure 11.9(g)).
Recall that a root is deficient iff it has no element. 0

Analysis of B-tree Deletion: Once again, we assume a disk-resident B-tree and that
disk nodes accessed during the downward search pass may be saved in a stack in main
memory, so they do not need to be reaccessed from the disk during the upward restruc-
turing pass. For a B-tree of height A, h disk accesses are made to find the node from
which the key is to be deieted and to transform the deletion to a deletion from a leaf. In
the worst case, a combine takes place at each of the last £ — 2 nodes on the root-to-leaf
path, and a rotation takes place at the second node on this path. The & — 2 combines
require this many disk accesses to retrieve a nearest sibling for each node and another
ht — 2 accesses to write out the combined nodes. The rotation requires one access to read
a nearest sibling and three to write out the three nodes that are changed. The total
number of disk accesses is 3h.

The deletion time can be reduced at the expense of disk space and a slight increase
in node size by including a delete bit, F;, for each element, E;, in a node. Then we can
set F; = 1 if E; has not been deleted and F; = 0 if it has. No physical deletion takes
place. In this case a delete requires a maximum of # + 1 accesses (/4 to locate the node
containing the element to be deleted and | to write out this node with the appropriate
delete bit set to (). With this strategy, the number of nodes in the tree never decreases.
However, the space used by deleted entries can be reused during further insertions (see
Exercises). As a result, this strategy has little effect on search and insert times (the
number of levels increases very slowly when m is large). The time taken to insert an
item may even decrease slightly because of the ability to reuse deleted element space.
Such reuses would not require us to split any nodes. O

EXERCISES

1. Show that all B-trees of order 2 are full binary trees,
2. Use the insertion algorithm of Program 11.2 to insert an element with key 40 into
the 2-3 tree of Figure 11.9(a). Show the resulting 2-3 tree.

3. Use the insertion algorithm of Program 11.2 to insert elements with keys 45, 95,
96, and 97, in this order, into the 2-3-4 tree of Figure 11.3. Show the resulting
2-3-4 tree follwoing each insert.

B-Trees 549

Use the deletion algorithm of Program 11.3 to delete the elements with keys 90,
95, 80, 70, 60 and 50, in this order, from the 2-3 tree of Figure 11.9(a). Show the
resulting 2-3 tree following each deletion.

Use the deletion algorithm of Program 11.3 to delete the elements with keys 85,

90, 92, 75, 60, and 70 from the 2-3-4 tree of Figure 11.3. Show the resutting 2-3-4

tree following each deletion.

(a) Insert elements with keys 62, 5, 85, and 75 one at a time into the order-5 B-
tree of Figure 11.10. Show the new tree after each element is inserted. Do
the insertion using the insertion process described in the text.

//@%EJ

o[1s] | | 2530 | |40]45[50] |

00 NN &ﬁDD

Figure 11.10: B-tree of order 5

{b) Assuming that the tree is kept on a disk and one node may be retrieved at a
time, how many disk accesses are needed to make each insertion? State any
assumptions you make.

(c) Delete the elements with keys 45, 40, 10, and 25 from the order-5 B-tree of
Figure 11.10. Show the tree following each deletion. The deletions are to
be performed using the deletion process described in the text.

(d) How many disk accesses are made for each of the deletions?

Complete Figure 11.8 by adding figures for the cases when p is the middle child
and right child of its parent.

Complete the symmetric case of Program 11.3.

Develop 2-3 tree functions to search, insert and delete. Test your functions using
your own est data.

Develop 2-3-4 tree functions to search, insert and delete. Test your functions using
your own test data.

11.

14.

15.

Write insertion and deletion algorithms for B-trees assuming that with each ele-
ment is associated an additional data member, deleted, such that deleted =
FALSE iff the corresponding element has not been deleted. Deletions should be
accomplished by setting deleted = FALSE, and insertions should make use of
deleted space whenever possible without restructuring the tree.

Write algorithms to search and delete keys from a B-tree by position; that is,
get (k} tinds the kth smallest key, and delete (k) deletes the kth smallest key in the
trec. (Hint: To do this efficiently, additional information must be kept in each
node. With each pair (E;,A;) keep N; = ZiL}, (number of elements in the subtree
A; + 1).) What are the worst-case computing times of your algorithms?

The text assumed a node structure that was sequential. However, we need to per-

form the following functions on a B-tree node: search, insert. delete, join, and

split.

(a) Explain why each of these functions is important during a search, insert. and
delete operation in the B-tree.

(b} Explain how a red-black tree could be used to represent each node. You will
need to use integer pointers and regard each red-black tree as embedded in
an array.,

{(c) What kind of performance gain/loss do you expect using red-black trees for
each node instead of a sequential organization? Try to quantify your
answer.

Modify Program 11.2 so that when node p has m elements, we first check to see if
either the nearest left sibling or the nearest right sibling of p has fewer than m — 1
elements. If so, p is not split. Instead, a rotation is performed moving either the
smallest or largest element in p to its parent. The corresponding element in the
parent, together with a subtree, is moved to the sibling of p that has space for
another element.

[Bayer and McCreight| Suppose that an insertion has been made into node p and
that it has become over-full (i.e., it now contains m elements). Further, suppose
that ps nearest right sibling g is full (i.e., it contains m — 1| elements). So, the ele-
ments in p and g together with the in-between element in the parent of p and ¢
make 2m elements. These 2m elements may be partitioned into three nodes 2. g,
and r containing |(2m -2)/3],[(2m - 1)/3], and |2m /3] clements, respec-
tively, plus two in-between elements (one for p and g and the other for ¢ and r),
So, we may split p and ¢ into 3 nodes p, ¢, and r that are almost two-thirds full,
replace the former in-between element for p and ¢ with the new one, and then
insert the in-between element for ¢ and r together with a pointer to the new node r
into the parent of p and g. The case when ¢ is the nearest left sibling of p is similar.

Rewrite Program 11.2 so that node splittings occur only as described here.

